
A

Formal

Approach

to

Conformance

Testing

Jan Tretmans





A Formal Approach to Conformance Testing



CIP–GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Tretmans, Gerrit Jan

A formal approach to conformance testing / Gerrit Jan
Tretmans. – [S.l. : s.n.]. – Ill.
Proefschrift Enschede. – Met lit. opg., reg.
ISBN 90–9005643–2
Trefw.: communicatiesystemen ; tests.

Copyright c©1992 by Jan Tretmans, Hengelo, The Netherlands.



A Formal Approach to Conformance Testing

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit Twente

op gezag van de rector magnificus
prof. dr. Th.J.A. Popma

volgens besluit van het College van Dekanen
in het openbaar te verdedigen

op donderdag 10 december 1992 te 13.15 uur

door

Gerrit Jan Tretmans

geboren op 27 augustus 1962
te Hengelo Ov.



Dit proefschrift is goedgekeurd door de promotor
prof. dr. H. Brinksma



Abstract

In order to assure successful communication between computer systems from different
manufacturers, standardized communication protocols are being developed and spec-
ified. As a next step implementations of these protocols are needed that conform to
these specifications. Testing is a way to check correctness of protocol implementations
with respect to their specifications. This activity is known as protocol conformance
testing.

This thesis deals with a formal approach to protocol conformance testing. Testing is
performed based on a formal specification of the protocol. The final aim is to obtain
methods for the (automatic) derivation of useful sets of tests from formal specifications.
The derived tests should be provably correct, which means that they should not detect
errors in correct implementations. Moreover, the derived tests should be meaningful:
erroneous implementations should be detected with a high probability. An important
aspect is a formal definition of what constitutes correctness, i.e. when does a protocol
implementation conform to a protocol specification.

Starting points for this thesis are the current, informal approach to conformance testing
as it is described in the international standard ISO IS-9646 ”OSI Conformance Testing
Methodology and Framework”, and the specification formalisms for distributed systems
based on labelled transition systems and process algebra. The most important concepts
of the standard ISO IS-9646, and of the specification formalisms used are introduced in
chapter 1.

Chapter 2 presents a framework for conformance testing. It is derived by giving a formal
interpretation to the most important concepts from the standard ISO IS-9646, such as
conformance requirement, the meaning of conformance, test purpose, test method, and
different kinds of tests. This interpretation is shown to lead naturally to a definition of
conformance as a (preorder) relation on the specification formalism. Such a relation is
called an implementation relation.

In chapter 3 the framework is elaborated with existing implementation relations for
labelled transition systems. The relations are introduced using the principle of ob-
servations: the behaviour of an implementation is correct if all observations made of
the implementation by an environment, can be explained from the behaviour of the
specification.

In chapter 4 test derivation algorithms are developed for one particular implementation

v



vi Abstract

relation, the relation conf. These algorithms can be used to derive tests from a labelled
transition system specification, which are complete and correct: an implementation is
correct according to conf if and only if all tests are successful. The test derivation
algorithms take labelled transition systems, and consequently they can also be used to
derive tests from a behaviour expression in a formal language for which the semantics
is defined by a labelled transition system. A problem appears if this labelled transi-
tion system is infinite in number of branches or number of states. Infinity prevents
the algorithms from being implemented. Therefore the algorithms are transformed into
algorithms that work on behaviour expressions. For a simple class of behaviour ex-
pressions rules are given with which tests can be derived compositionally from these
behaviour expressions.

The implementation relations of chapter 3 and the test derivation algorithms of chap-
ter 4 assume synchronous communication between the tester and the implementation,
as can be modelled by the parallel synchronization operator on labelled transition sys-
tems. Chapter 5 shows that this theory is not applicable when the tester and the
implementation communicate via a FIFO buffer. Tests derived for synchronous com-
munication cannot detect all erroneous implementations, while correct implementations
are wrongly considered to be erroneous. To demonstrate this a queue-operator on la-
belled transition systems is defined to formalize asynchronous communication between
the tester and the implementation. This queue operator models two queues, one for
input and one for output. A system that communicates asynchronously with its en-
vironment is called a queue-context. It is shown that the behaviour of queue contexts
is characterized by two sets of sequences of actions (traces): sequences that can be
performed by a queue context, and sequences that result in a state in which no output
is possible. Implementation relations for asynchronous communication are derived, and
first steps towards test derivation algorithms for these relations are made. The de-
rived tests are translated into TTCN, the standardized test notation from the standard
ISO IS-9646. Since TTCN uses a mechanism for communication based on queues this
translation makes sense, as opposed to a translation of synchronous tests.

Using the test derivation algorithms of chapters 4 and 5, large numbers of tests can be
derived. The reduction of the number of tests to an amount that can be handled eco-
nomically and practically is called test selection. Chapter 6 studies a framework for test
selection based on assigning values and costs to sets of tests. The value is related to the
error detecting capability of a set of tests. The framework, which is independent from
any specification formalism, is elaborated for labelled transition systems. Moreover, a
test selection technique based on specification selection is presented for labelled tran-
sition systems. Instead of selecting tests from a too large set of tests, the specification
is transformed, such that the tests derived from the transformed, partial specification
exactly constitute a selection of the tests derived from the original specification.

The last chapter, chapter 7, presents conclusions and a few suggestions for further re-
search: the relation between testing and verification, asynchronous communication with
other kinds of contexts, extension of test selection methods to realistic specifications,
the integration of values and costs, and design for testability of protocols. Finally it is



Abstract vii

noted that the applicability and shortcomings of all presented ideas need to be validated
by applying them to testing realistic protocols.



Acknowledgements

I am indebted to my promotor Ed Brinksma for his ideas, inspiration, constructive
criticism, assistance in the production of this thesis, and being co-author of some of the
chapters. Without his help it would have been difficult to complete this thesis.

I would like to thank Pim Kars for being my roommate, for reading and commenting
almost all my drafts, some of them very immature, and for being there to answer my
questions.

Louis Verhaard and Jeroen van de Lagemaat were co-authors for some parts of this
thesis, for which I thank them.

Henk Eertink, Rom Langerak, Arend Rensink, Pippo Scollo, Rudie Alderden, Jan
Kroon and Stan van de Burgt are thanked for commenting on earlier versions of some
chapters.

I would like to thank Chris Vissers for giving me the opportunity to work in the stim-
ulating environment of the TIOS group, and all the members of the TIOS group for
many enlightning discussions and mental support.

Finally, I thank my parents for encouraging and supporting me during my whole study,
and Andèle for her love, support, and understanding.



Contents

Abstract v

Acknowledgements viii

Contents ix

1 Introduction 1
1.1 Conformance Testing and the Use of Formal Methods . . . . . . . . . . 1

1.1.1 Protocol Conformance Testing . . . . . . . . . . . . . . . . . . . 2
1.1.2 Formal Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Formal Methods in Protocol Conformance Testing . . . . . . . . 7

1.2 Overview of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Overview of ISO IS-9646 . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 The Conformance Testing Process . . . . . . . . . . . . . . . . . 11
1.3.2 A Conforming Implementation . . . . . . . . . . . . . . . . . . . 11
1.3.3 Test Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.4 Test Implementation . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.5 Test Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 Labelled Transition Systems . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4.1 Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4.2 Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4.3 Equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 A Formal Framework for Conformance Testing 27
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Formal Interpretation of ISO IS-9646 . . . . . . . . . . . . . . . . . . . 28

2.2.1 The Meaning of Conformance . . . . . . . . . . . . . . . . . . . 28
2.2.2 PICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.3 Test Purposes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.4 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.5 Generic Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.6 Abstract Test Cases . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.7 Test Generation in Practice . . . . . . . . . . . . . . . . . . . . 42
2.2.8 Limitations of Testing . . . . . . . . . . . . . . . . . . . . . . . 45
2.2.9 PIXIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3 Conformance as a Relation . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.4.1 Natural Language Specification of the Vending Machine . . . . . 48

ix



x Contents

2.4.2 Formal Specification of the Vending Machine . . . . . . . . . . . 50
2.4.3 PICS as a Specification Parameter . . . . . . . . . . . . . . . . 55
2.4.4 Application of Logic . . . . . . . . . . . . . . . . . . . . . . . . 57
2.4.5 Test Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.5 Summary of the Testing Framework . . . . . . . . . . . . . . . . . . . . 61

3 Implementation Relations 65
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2 Testing Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.3 Implementation Relations . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.4 The Conformance Relation CONF . . . . . . . . . . . . . . . . . . . . . 73

3.4.1 Requirements for CONF . . . . . . . . . . . . . . . . . . . . . . 73
3.4.2 Nondeterministic Tests with Trace Based Verdicts . . . . . . . . 74
3.4.3 Deterministic Tests with State Based Verdicts . . . . . . . . . . 76
3.4.4 CONF and Logic . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4 Synchronous Testing 81
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2 Test Derivation for Labelled Transition Systems . . . . . . . . . . . . . 82

4.2.1 The Canonical Tester . . . . . . . . . . . . . . . . . . . . . . . . 88
4.3 Language Based Test Derivation . . . . . . . . . . . . . . . . . . . . . . 89

4.3.1 Acceptance Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.3.2 Compositional Test Derivation . . . . . . . . . . . . . . . . . . . 93

4.4 Test Derivation with Infinite Branching . . . . . . . . . . . . . . . . . . 96
4.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5 Asynchronous Testing 107
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.2 Synchronous versus Asynchronous Testing . . . . . . . . . . . . . . . . 110
5.3 Queue Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.4 Queue Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.5 Traces of Queue Contexts . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.6 Output Deadlocks of Queue Contexts . . . . . . . . . . . . . . . . . . . 122
5.7 Queue Implementation Relations . . . . . . . . . . . . . . . . . . . . . 130
5.8 Test Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.9 Computation of Outputs and Deadlocks . . . . . . . . . . . . . . . . . 141
5.10 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6 Test Selection 149
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.2 A Framework for Test Selection . . . . . . . . . . . . . . . . . . . . . . 150

6.2.1 Value Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.2.2 Cost Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.3 Probabilities as Valuations . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.4 Elaborated Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.5 Test Selection by Specification Selection . . . . . . . . . . . . . . . . . 164

6.5.1 Specification Selection for Labelled Transition Systems . . . . . 166
6.6 Remarks on Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 168



Contents xi

7 Concluding Remarks 171
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
7.2 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

A Mathematical Preliminaries 177

B Proofs 183
B.1 Chapter 1 (Introduction) . . . . . . . . . . . . . . . . . . . . . . . . . . 183
B.2 Chapter 2 (A Formal Framework for Conformance Testing) . . . . . . . 186

B.2.1 Section 2.3 (Conformance as a Relation) . . . . . . . . . . . . . 186
B.2.2 Proofs of Section 2.4 (Examples) . . . . . . . . . . . . . . . . . 187

B.3 Chapter 3 (Implementation Relations) . . . . . . . . . . . . . . . . . . 190
B.3.1 Section 3.2 (Testing Equivalence) . . . . . . . . . . . . . . . . . 190
B.3.2 Section 3.3 (Implementation Relations) . . . . . . . . . . . . . . 194
B.3.3 Section 3.4 (The Conformance Relation CONF) . . . . . . . . . 197

B.4 Chapter 4 (Synchronous Testing) . . . . . . . . . . . . . . . . . . . . . 203
B.4.1 Section 4.2 (Test Derivation for Labelled Transition Systems) . 203
B.4.2 Section 4.3 (Language Based Test Derivation) . . . . . . . . . . 210
B.4.3 Section 4.4 (Test Derivation with Values) . . . . . . . . . . . . . 216

B.5 Chapter 5 (Asynchronous Testing) . . . . . . . . . . . . . . . . . . . . 218
B.5.1 Section 5.4 (Queue Equivalence) . . . . . . . . . . . . . . . . . . 218
B.5.2 Section 5.5 (Traces of Queue Contexts) . . . . . . . . . . . . . . 221
B.5.3 Section 5.6 (Output Deadlocks of Queue Contexts) . . . . . . . 227
B.5.4 Section 5.7 (Queue Implementation Relations) . . . . . . . . . . 234
B.5.5 Section 5.8 (Test Derivation) . . . . . . . . . . . . . . . . . . . . 242
B.5.6 Section 5.9 (Computation of Outputs and Deadlocks) . . . . . . 243

B.6 Chapter 6 (Test Selection) . . . . . . . . . . . . . . . . . . . . . . . . . 247
B.6.1 Section 6.2 (A Framework for Test Selection) . . . . . . . . . . . 247
B.6.2 Section 6.5 (Test Selection by Specification Selection) . . . . . . 249

Bibliography 253

Index 259

Samenvatting 263

Curriculum Vitae 267



xii Contents



Chapter 1

Introduction

1.1 Conformance Testing and the Use of Formal

Methods

The development of distributed systems, in which the computer functionality, such as
processing functions, information storage, and human interaction, is distributed over
different computer systems, raises the need for exchanging information between these
systems. To have computer systems communicate successfully, the communication must
occur according to well-defined rules. A protocol describes the rules with which com-
puter systems have to comply in their communication with other computer systems. A
protocol entity is that part of a computer system that takes care of the local responsi-
bilities in communicating according to the protocol.

To have successful communication also among computer systems of different manufac-
turers, many protocols are not developed in isolation, but within groups of manufactur-
ers and users, with the aim of standardizing such protocols. This has led for instance to
the development of the OSI Reference Model for Open Systems [ISO84], which serves as
a framework for a set of standards that enable computer systems to communicate. How-
ever, to assure successful communication it is not sufficient to specify and standardize
communication protocols. It must also be possible to ascertain that the implementa-
tions of these protocols really conform to these standard protocol specifications. One
way to do this is by testing these protocol implementations. This activity is known as
protocol conformance testing.

In the design, specification, and analysis of protocols the use of formal, mathematically
based methods increases. This makes it desirable and possible to base testing of protocol
implementations on formal methods as well. This thesis deals with the use of formal
methods in protocol conformance testing.

This section continues with an introduction to protocol conformance testing, a discus-
sion of how testing fits within the development trajectory of protocols, and a rationale

1



2 Chapter 1. Introduction

for using formal methods in conformance testing. Section 1.2 gives an overview of the
rest of this thesis.

1.1.1 Protocol Conformance Testing

Testing is the process of trying to find errors in a system by means of experimentation.
The experimentation is usually carried out in a special environment, where normal
and exceptional use is simulated. The aim of testing is to gain confidence that during
normal use the system will work satisfactory: since testing of realistic systems can never
be exhaustive, because systems can only be tested during a restricted period of time,
testing cannot ensure complete correctness of an implementation. It can only show the
presence of errors, not their absence.

Protocol conformance testing is a branch of testing where an implementation of a pro-
tocol entity is tested with respect to its specification. The aim is to gain confidence
in the correct functioning of the implementation, and hence to improve the probability
that the implementation will communicate successfully with its environment.

To conduct testing, experiments, or tests must be systematically devised. These tests
are applied to an implementation, and the test outcomes are compared with the ex-
pected or calculated outcomes. Based on the results of the comparison a verdict can
be formulated about the correctness of the implementation, which, if negative, can be
used for improving the implementation.

In testing, in particular in software testing (see e.g. [Mye79, Whi87]), a distinction is
made between functional testing and structural testing. Structural testing, also referred
to as white-box testing, is based on the internal structure of a computer program. The
aim is to exercise thoroughly the program code, e.g. by executing each statement at
least once. Tests are derived from the program code. With functional testing externally
observed functionality of a program is tested from its specification. It is also called
black-box testing: a system is treated as a black box, whose functionality is determined
by observing it, i.e. no reference is made to the internal structure of the program. The
main goal is to determine whether the right (with respect to the specification) product
has been built. Functional tests are derived from the specification. A prerequisite is a
precise and clear specification.

Conformance testing is a kind of functional testing: an implementation of a protocol
entity is solely tested with respect to its specification. Only the observable behaviour
of the implementation is tested, i.e. the interactions of an implementation with its envi-
ronment; no reference is made to the internal structure of the protocol implementation.
In practical conformance testing the internal structure of the entity is usually not even
accessible to the tester: the computer system in which the entity under test is located
need not be accessible. The tester can only observe the entity by communicating with
it.



1.1. Conformance Testing and the Use of Formal Methods 3

Other kinds of protocol testing Since in practice it turns out that functional
testing of an implementation in isolation, i.e. conformance testing, does not guarantee
successful communication between systems, products are also tested in a realistic envi-
ronment, for example in a model of a communication network. In this kind of testing
the interaction with other computer systems can be examined in more detail. It is
referred to as interoperability testing.

Apart from testing the functional behaviour of a protocol implementation, other kinds
of testing test other aspects of a protocol, e.g. performance testing to measure the
quantitative aspects of an implementation, robustness testing to examine the imple-
mentation’s behaviour in an erroneous behaving environment, and reliability testing to
test whether the implementation works correctly during a certain period of time.

Parties involved Conformance testing can be performed by different parties. First,
the implementer or supplier of a product tests its product before selling it. Users of prod-
ucts, or their representative organizations, test products for their correct functioning.
Telecommunications administrations check products before connecting them to their
networks to prevent malfunctioning of a network caused by incorrectly implemented
products. Finally, independent third party test laboratories can perform conformance
tests for any of the previously mentioned parties. A system of accreditation allows
testing laboratories to certify implementations that they have tested and judged to be
conforming. Certification by accredited testing laboratories makes repeated testing by
supplier, buyer, and network owner superfluous.

Standardization of conformance testing If implementations of the same (inter-
nationally) standardized protocol are tested it should not occur that different test lab-
oratories decide differently about conformance of the same implementation. Ideally, it
should not be necessary that the same product is tested more than once by different
testing laboratories. This is possible if testing is based on generally accepted princi-
ples, using generally accepted tests, and leading to generally accepted test results. To
achieve this the International Organization for Standardization (ISO), together with
the CCITT, has developed a standard for conformance testing of Open Systems. This
is the standard ISO IS-9646: ‘OSI Conformance Testing Methodology and Framework’
[ISO91a].

The purpose of this standard is ‘to define the methodology, to provide a framework for
specifying conformance test suites, and to define the procedures to be followed during
testing’, leading to ‘comparability and wide acceptance of test results produced by
different test laboratories, and thereby minimizing the need for repeated conformance
testing of the same system’ [ISO91a, part 1, Introduction]. The standard does not
specify tests for specific protocols, but it defines a framework in which such tests should
be developed, and it gives directions for the execution of such tests. The standard
recommends that sets of tests, called test suites, be developed and standardized for
all standardized protocols. A brief overview of the standard ISO IS-9646 is given in
section 1.3.



4 Chapter 1. Introduction

1.1.2 Formal Methods

The increasing complexity and the need for specifications that are well-defined, com-
plete, consistent, unambiguous and precise, lead to the use of formal methods in the
specification of distributed systems and protocols. Using formal methods the behaviour
of a distributed system is described in a language with a formally defined syntax and
semantics, instead of a natural language such as English. Formal descriptions (FD) of
behaviour written in a Formal Description Technique (FDT) that has a well-defined,
formal mathematical model, provide precise and unambiguous specifications, allow to
reason about them formally, and make it possible to analyse them using mathematical
means. Moreover, the use of FDTs allows the definition and implementation of tool
functions that can support the development process of complex distributed systems.

Some of the formal description techniques that are mainly intended to be applied for the
specification of protocols in the context of open systems are standardized. Standardized
FDTs are Estelle [ISO89a] and SDL [CCI88], of which the underlying mathematical
model is based on extended finite state machines, and LOTOS [ISO89b], which is based
on the theory of process algebras.

The Formal Protocol Development Trajectory

The process of developing a system based on formal methods, as advocated in e.g.
[LOT92], is schematically depicted in figure 1.1. We discuss it briefly.

Informal requirements The first phase in the development process is the require-
ments capturing phase. The intended user is asked about her or his requirements and
expectations about the system that is developed. This phase is informal, and the result
consists of an overview of the user requirements, mostly written in a natural language.
The informal user requirements are not guaranteed to be complete, nor consistent.

Formal specification A specification is developed from the user requirements using
a formal technique. The specification should be sufficiently concrete to guarantee sat-
isfaction of the user requirements, but sufficiently abstract not to fix irrelevant details,
and to leave freedom of implementation choices. This specification being a formal ob-
ject can be formally analysed for its properties, e.g. it can be formally verified that it
does not possess unspecified deadlocks.

Implementation The formal specification of the specification phase is transformed in
a number of implementation steps (1 . . . n) into a final implementation (implementation
n). Each implementation step consists of transforming a higher level, relatively more
abstract, formal description (implementation i) into a lower level, more concrete, formal
description (implementation i + 1). In each transformation step design decisions are
made.



1.1. Conformance Testing and the Use of Formal Methods 5

requirements
informal

specification
formal

implementation
1

implementation
i

i+1
implementation

implementation
n

realization

@
@@R

@
@@R

@
@@R

@
@@R

@
@

@@R

@
@

@@R

�

�
testing
verification
transformation

Figure 1.1: System development process.



6 Chapter 1. Introduction

Realization In the final step a realization is derived from the most concrete imple-
mentation (implementation n). While the most concrete implementation is still a formal
description of the system under development, the realization is a physical system, the
concrete product that is the goal of the whole development process. The realization
can consist of e.g. hardware components, a single chip, or a piece of executable code.

Correctness An important aspect of going through the successive phases of the devel-
opment trajectory is the correctness of the different system descriptions. This concerns
all phases. When the initial ideas and user requirements have been combined and laid
down in the formal specification, this specification must be analysed to check whether
it indeed specifies what was intended, and whether it is internally consistent. This is
referred to as protocol design validation. Also each implementation step, and the final
realization step have to be checked for correctness with respect to their previous step,
and with respect to the initial specification.

To check for correctness it must first be defined what correctness is. An observation is
that a necessary condition for correctness is that successive system descriptions at least
preserve the user requirements, in order not to end up with a realization that does not
fulfil the user’s needs.

When it has been defined what correctness is, there are different techniques to check
it. To establish correctness of successive design steps we can use transformation, veri-
fication, or experimentation.

Transformation If the design step is the result of (automatically) transforming a
relatively abstract description into a more concrete description, checking the correctness
of the design step can be replaced by checking correctness of the algorithm or the
transformation tool used. An example is the use of a compiler, e.g. to transform the
last implementation n into executable code.

Verification Verification consists of proving formally, i.e. by mathematical means,
the correctness of one formal description with respect to another. It is based on the
formal semantics of the formal description technique used.

Experimentation Correctness can be made plausible by applying experiments or
tests to system descriptions at different levels, and comparing the experimentation
results. To experiment with an abstract formal description it is necessary that the
description is executable, e.g. in the form of a simulation model of the system.

If we wish to check correctness of two given descriptions with respect to each other,
verification gives the highest degree of certainty. However, this is not always possible.
The first, and fundamental reason is that the initial user requirements and the final re-
alization are no formal objects. User requirements usually consist of a natural language



1.1. Conformance Testing and the Use of Formal Methods 7

document, and the realization may be a physical product. These cannot be the object
of formal verification, since for verification it is necessary that the system descriptions
that are compared are both formal objects, amenable to mathematical proof. The sec-
ond reason is that distributed systems tend to be very large and complex, which makes
that verification is not feasible without powerful proof assistant tools. Such tools are
not available. A third reason applies specifically in the context of open systems, where
conformance of an implementation to a specification is certified by an independent,
accredited test laboratory. Implementers of protocols normally do not allow the test
laboratories access to the implementation details of their products to verify correctness.

specification
S

implementation
I

tests

A
A
A
A
AAU

?

�

conformance

Figure 1.2: Relative specification and implementation.

The alternative to verification in these cases is experimentation. If experiments are
aimed at checking correctness of an implementation or realization with respect to a
more abstract, formal description, where the experiments are systematically derived
from the abstract formal description, we refer to it as conformance testing. In general,
by the term specification we understand the relatively abstract, formal description, and
by the term implementation the more concrete description or physical product. The
general problem of conformance testing is then depicted in figure 1.2: the conformance
of an implementation I is checked against the formal specification S by deriving tests
from S and applying them to I. The specification S stands for the formal specification
or any of the implementations 1 . . . n in figure 1.1; the implementation I stands for any
of the implementations 1 . . . n, or the realization.

1.1.3 Formal Methods in Protocol Conformance Testing

Formal methods in protocol conformance testing concern testing of protocol implemen-
tations for conformance with respect to their specifications, where the specification is
given by means of a formal description, and where testing is based on a formal definition
of what constitutes conformance. Correctness of the specification is assumed, and is
not considered as part of conformance testing.

On the one hand the use of formal methods in conformance testing is a consequence
of specifying protocols by means of formal descriptions, thus creating a need to as-
sess conformance based on these formal descriptions. On the other hand the use of



8 Chapter 1. Introduction

formal methods has benefits in conformance testing itself. First, concepts of confor-
mance testing can be defined formally, and thus more precisely. Secondly, the use of
FDTs (Formal Description Techniques) makes it possible to do formal test validation,
i.e. checking whether a test really tests what it is intended for. Thirdly, the use of for-
malisms allows the definition of test generation algorithms. This will obviate the need
for manual generation of tests for each protocol specification, thus avoiding the main
bottle-neck of the current conformance testing methodology. Using formal methods,
algorithms for test generation can be standardized instead of standardizing a test suite
for each standardized protocol. This will also have large benefits in test suite main-
tenance, e.g. in case of modification of a protocol. Finally, the use of formal methods
allows the automatic interpretation of test outcomes, thus accelerating the assessment
of conformance.

Standardization of formal methods in conformance testing The standard
ISO9646 [ISO91a] makes no strong assumptions about the form of the protocol speci-
fications, but the presented methodology is intended mainly for specifications written
in a natural language. When FDTs are used, it will be necessary to examine the con-
sequences for the standardization of conformance testing. For that purpose a joint
project within ISO and CCITT was launched: ‘Formal Methods in Conformance Test-
ing’ (ISO/IEC JTC 1/SC 21/WG 1 Project 54, CCITT Question 10/X [ISO91b]). The
scope of this project is ‘to define a general methodology on how to perform conformance
testing of a protocol implementation given a formal specification of a protocol standard’
[ISO91b, section 1].

1.2 Overview of the Thesis

Our goal is to develop a formal approach to conformance testing. Starting points are
the informal testing methodology of the standard ISO9646, which is the basis of current
practice in conformance testing, and the formalism of labelled transition systems, which
is suitable for the formalization of protocol concepts, and which forms the underlying
model for a number of formal description techniques. These two starting points are
briefly outlined in the two remaining sections of this introductory chapter. Section 1.3
has been published as [TL90].

Chapter 2 formalizes the testing methodology of ISO9646, giving a formal interpretation
to the most important concepts in this standard. From this formal interpretation a
formal framework for testing is developed. It is illustrated using the formalism of
labelled transition systems. Chapter 2 has been published as [TKB92].

Chapter 3 applies the testing framework to labelled transition systems, and studies the
question of what constitutes conformance in this model. For the purpose of testing on
the basis of labelled transitions systems chapter 3 introduces two notations for tests:
labelled transition systems themselves, and a special class of deterministic labelled
transition systems.



1.3. Overview of ISO IS-9646 9

Using the test notations and the definition of conformance introduced in chapter 3,
chapter 4 elaborates on algorithms for the derivation tests from labelled transition
system specifications.

While chapters 3 and 4 assume that execution of test cases is performed with direct,
synchronous communication between test case and implementation, chapter 5 shows
that these results are invalid when the communication is asynchronous. Asynchronous
communication is formalized in the realm of labelled transition systems by means of a
pair of queues. Communication between tester and implementation via such queues,
correctness of implementations that communicate via queues, and test case derivation
are elaborated. This work has been published as [TV92, VTKB92].

All test derivation algorithms turn out to produce infinitely many tests for any realistic
specification. Chapter 6 discusses test selection to reduce the number of derived tests,
both in a general setting, and applied to labelled transition systems. This work is based
on [BTV91].

Chapter 7 contains the conclusions and discusses some open problems.

Some mathematical preliminaries and notations are presented in appendix A. Proofs
of all propositions and theorems are contained in appendix B.

1.3 Overview of ISO IS-9646

The current practice of protocol conformance testing is based on the standard ISO IS-
9646, ‘OSI Conformance Testing Methodology and Framework’ [ISO91a, Ray87]. This
standard defines a methodology and framework for protocol conformance testing assum-
ing that protocols are specified using a natural language. It was originally developed for
OSI protocols, but it is also used for testing other kinds protocols, e.g. ISDN protocols.
The standard consists of five parts, each defining an aspect of conformance testing:

◦ part 1 is an introduction and deals with the general concepts;

◦ part 2 describes the process of abstract test suite specification;

◦ part 3 defines the test notation TTCN;

◦ part 4 deals with the execution of tests;

◦ part 5 describes the requirements on test laboratories and their clients during the
conformance assessment process.

This section gives a brief overview of ISO9646. Most attention is spent on parts 1 and
2, i.e. the generation and specification of test suites, since the next chapters concentrate
mainly on these aspects of conformance testing.



10 Chapter 1. Introduction

protocol

IUT
implementation

standard
protocol

specification

verdict

test generation

standard
conformance

test suite

#
"

 
!

#
"

 
!

#
"

 
!

#
"

 
!

? ?

�
�

�
�

�	

?

?

@
@

@
@

@@R

�
�

�
�

��	

@
@

@
@

@R

implementation
test

implementation
process

test execution

conformance testing
process of

Figure 1.3: Global overview of the conformance testing process.



1.3. Overview of ISO IS-9646 11

1.3.1 The Conformance Testing Process

In the process of conformance testing three phases are distinguished [ISO91a, part 1,
section 1.3]. They are depicted in figure 1.3, together with the activity of protocol
implementation. The first phase is the specification of an abstract test suite for a par-
ticular (OSI) protocol. We refer to it by test generation or test derivation. This test
suite is abstract in the sense that tests are developed independently of any implementa-
tion. It is intended that abstract test suites of standardized protocols are standardized
themselves. The second phase consists of the realization of the means of executing
specific test suites. It is referred to by test implementation. The abstract test cases
of the abstract test suite are transformed into executable tests that can be executed
or interpreted on a real testing device or test system. The peculiarities of the testing
environment and the implementation, which during testing is called IUT (Implemen-
tation Under Test), are taken into account. The last phase is the test execution. The
implemented test cases are executed with a particular IUT and the resulting behaviour
of the IUT is observed. This leads to the assignment of a verdict about conformance
of the IUT with respect to the standard protocol specification. The results of the test
execution are documented in the protocol conformance test report (PCTR).

In the next subsections these phases are described in more detail. This leads to a more
detailed view of the conformance testing process given in figure 1.4.

1.3.2 A Conforming Implementation

Before an implementation can be tested for conformance it must be defined what it
means for an implementation to conform to its specification. The definition of what
constitutes a conforming implementation determines what should be tested. ISO9646
states that a system ‘exhibits conformance if it complies with the conformance require-
ments of the applicable . . . standard’ [ISO91a, part 1, section 5.1]. This means that a
correct implementation is one which satisfies all conformance requirements, and that
these conformance requirements must be mentioned explicitly in the protocol stan-
dard. Conformance requirements express what a conforming implementation shall do
(positively specified requirements), and what it shall not do (negatively specified re-
quirements).

A complication arises by the fact that a protocol standard does not uniquely specify
one protocol, but a class of protocols. Most standards leave open a lot of options, which
may or may not be implemented in a particular protocol implementation, but which, if
implemented, must be implemented correctly. An implementer selects a set of options
for implementation. All implemented options of a specific protocol implementation
are listed by the implementer in the PICS, the Protocol Implementation Conformance
Statement, so that the tester knows which options have to be tested. To assist in
producing the PICS a PICS proforma is attached to the protocol standard. This is a
questionnaire in which all possibilities for the selection of options are enumerated.



12 Chapter 1. Introduction

Restrictions on the selection of options are given in the static conformance requirements
of a standard. They define requirements on the minimum capabilities that an imple-
mentation is to provide, and on the combination and consistency of different options.

Example 1.1
In the ISO/OSI Transport Protocol [ISO86] five classes (0 .. 4) are distinguished. In
a particular implementation not all classes need be implemented. However, the choice
is not completely free, e.g. if class 4 is implemented also class 2 must be implemented.
Such a restriction is recorded in the protocol standard as part of the static conformance
requirements. In the PICS the implemented classes of a particular implementation are
documented.

2

The main part of a protocol standard consists of dynamic conformance requirements.
They define requirements on the observable behaviour of implementations in the com-
munication with their environment. They concern the allowed orderings of observable
events, such as sending and receiving of PDUs (protocol data units) and ASPs (abstract
service primitives), the coding of information in the PDUs, and the relation between
information content of different PDUs.

Example 1.2
A dynamic conformance requirement of the ISO/OSI Transport Protocol is the require-
ment that after receiving a T-PDU-connect-request from the peer entity either the
user of the Transport entity is notified by means of a T-SP-connect-indication service-
primitive, or a T-PDU-disconnect-request is sent to the peer entity.

2

Summarizing, the definition of a conforming implementation is [ISO91a, part 1, sections
3.4.10 and 5.6]:

‘A conforming implementation is one which satisfies both static and dy-
namic conformance requirements, consistent with the capabilities stated in
the PICS.’

Conformance testing consists of checking whether an IUT satisfies all static and dy-
namic conformance requirements. For the static conformance requirements this means
a reviewing process of the PICS delivered with the IUT. This is referred to as the static
conformance review. For the dynamic conformance requirements this means running a
number of tests against the IUT. One test is referred to as a test case. A test suite is a
complete set of test cases, i.e. a set that tests all dynamic conformance requirements.

1.3.3 Test Generation

The first phase of the conformance testing process is test generation. It consists of
systematically deriving test cases from a protocol specification. The goal is to develop an
abstract test suite, i.e. a specification of a test suite that is implementation independent,



1.3. Overview of ISO IS-9646 13

standard
protocol

specification

conformance
requirements

conformance
requirements

proforma
PICS

static

dynamic�
�
�
�process

implementation

�
�
�
�test execution

�
�
�
�

analysis
of results

test report
verdict

certification

�
�
�
�test selection

�
�
�
�

test
implementation

PICS

PIXIT

proforma
PIXIT

test suite
abstract

standardized

behaviour
capability

basic interconnection

notation
test

standardized
test methods

test suite
generic

purposes
test

�
�
�
�

�

?

�-

?

?

?

?

�

?

?

?

�
-

-

-

-
6

? ? ?

-

?

static
conformance

review

protocol
implementation

IUT

basic interconnection

executable
test suite

capability
behaviour

Figure 1.4: Detailed overview of the conformance testing process.



14 Chapter 1. Introduction

specified in a well-defined test notation language, suitable for standardization, and
testing all aspects of the protocol in sufficient detail. Since the relevance of a protocol
specification with respect to conformance testing is its set of conformance requirements,
and since the static conformance requirements are checked by reviewing the PICS, this
means that the set of the dynamic conformance requirements in a protocol standard is
the starting point for test generation.

Test cases are derived systematically from the dynamic conformance requirements in a
multi-step procedure. In the first step, one or more test purposes are derived for each
conformance requirement. A test purpose is a precise description of what is going to be
tested in order to decide about the satisfaction of a particular conformance requirement.
As the next step it is recommended to derive a generic test case for each test purpose.
A generic test case is an operationalization of a test purpose, in which the actions
necessary to achieve the test purpose are described on a high level, without considering
a test method or the environment in which the actual testing will be done. The last step
is the derivation of an abstract test case for each generic test case. In this step a choice
is made for a particular test method, and the restrictions implied by the environment
in which testing will be carried out are taken into account.

Test methods

A protocol standard specifies the behaviour of a protocol entity at the upper and lower
access points of the protocol ((N)-SAP en (N-1)-SAP). Hence the ideal points to test
the entity are these SAPs. However, these SAPs are not always directly accessible
to the tester. The points where the tester controls and observes the IUT are called
the Points of Control and Observation (PCO). PCOs may, but need not coincide with
the boundaries of the IUT. Normally there are two PCOs, one corresponding with the
upper access point of the IUT, and one with the lower access point. A similar conceptual
separation is made for the tester. The part of the tester that controls and observes the
PCO connected to the upper access point is called the Upper Tester (UT). The part
that controls and observes the PCO connected to the lower access point is called the
Lower Tester (LT).

A test method defines a model for the accessibility of the IUT to the tester in terms
of PCOs and their place within the OSI reference model [ISO84]. Aspects that can be
distinguished are:

◦ existence of PCOs: if one of the access points is not accessible at all there is no
PCO for that access point;

◦ whether there are other protocol layers between the PCO and the access point,
and the kind of events that are communicated (ASPs or PDUs);

◦ the positioning of the PCOs in the same computer system as the IUT, called the
System Under Test (SUT);

◦ the internal functioning of the tester in terms of the distribution of testing functions
over LT and UT, and the rules that define their coordination: the test coordination



1.3. Overview of ISO IS-9646 15

procedures.

By varying these aspects different test methods are obtained. Some have been identified
and standardized in ISO9646 [ISO91a, part 2, section 12] for use in standardized ab-
stract test suites. In these standardized test methods the lower access point of the IUT
is always accessible via an underlying service; the upper access point may be hidden.
Standardized test methods are the Local Single-layer test method (LS-method), the
Distributed Single-layer test method (DS-method), the Coordinated Single-layer test
method (CS-method), and the Remote Single-layer test method (RS-method). Fig-
ure 1.5 shows the DS-method as an example. There are two PCOs. An example of
a test method with one PCO is the RS-method: in the RS-method there is no upper
tester.

A standardized abstract test suite refers to a particular test method, choosing the most
appropriate one.

6

?

6

?
-�

service provider

SUTtest
system

(N)-ASPs

(N-1)-ASPs
IUT

(N)-PDUs

coordination

LT

UT

PCO

PCO

test

Figure 1.5: The distributed test method.

The four test methods that were mentioned, can be used in variations where the IUT
consists of more than one subsequent protocol layers. These layers can be tested as
a whole (multi-layer testing), or one layer can be tested embedded in the other layers
(embedded testing). The test methods are LM, CM, DM and RM (Local Multi-layer,
etc.), and LSE, CSE, DSE and RSE (Local Single-layer Embedded, etc).

Test notation

Since abstract test suites are standardized, they must be specified in a test notation
that is well-defined, independent of any implementation, and generally accepted. IS-



16 Chapter 1. Introduction

9646 recommends the semi-formal language TTCN, the Tree and Tabular Combined
Notation, which is defined in [ISO91a, part 3].

In TTCN the behaviour of test cases is specified by sequences of input and output events
that occur at the PCOs. A sequence can have different alternatives, where different
subsequent behaviours can be chosen, e.g. depending on output produced by the IUT,
the expiration of timers, or values of internal parameters of the tester. Successive events
are indicated by increasing the level of indentation, alternative events have the same
indentation. A sequence ends with the specification of the verdict that is assigned when
the execution of the sequence ends. The verdicts in the different possible alternative
behaviours differ. Some alternatives will describe correct behaviour, ending with a
positive verdict, while other alternatives describe erroneous behaviour, ending with a
negative verdict.

TTCN is defined in such a way that automatic execution is feasible. A simplified
example of a TTCN behaviour is presented in figure 1.6.

Test Case Dynamic Behaviour

Test Case Name: Conn Estab
Group: transport/connection
Purpose: Check connection establishment with remote initiative

behaviour constraints verdict

+ preamble
LT ! T-PDU-connect-request

UT ? T-SP-connect-indication
UT ! T-SP-connect-response

LT ? T-PDU-connect-confirm pass

OTHERWISE fail

LT ? T-PDU-disconnect-request inconclusive

OTHERWISE fail

Figure 1.6: A simplified TTCN example.

Classification of tests

Tests can be classified according to the extent to which they give an indication of
conformance. The following distinction is made:

◦ basic interconnection tests

◦ capability tests

◦ behaviour tests

◦ conformance resolution tests

The classification is applicable to generic, abstract and the executable tests, which will
be discussed in section 1.3.4.



1.3. Overview of ISO IS-9646 17

Basic interconnection tests are used to guarantee a basic level of interconnection between
the tester and the IUT. Their main purpose is economical: before an expensive test
environment is developed first some basic functions of the IUT are checked, e.g. the
establishment of a connection between the tester and the IUT.

Capability tests serve to verify the compliance between the implemented options and
the options stated in the PICS.

Behaviour tests constitute the main part of a test suite. They test the dynamic confor-
mance requirements of a protocol standard in full detail within the limits of technical
and economical feasibility. They are the basis for the final verdict about conformance.

Conformance resolution tests do not belong to the actual conformance tests. They form
supplementary tests that can be used to do extra testing if problems are encountered,
or to trace errors. These tests have a heuristic nature, they are not standardized, and
they cannot be used as a basis for the final verdict.

Hierarchical structuring of tests

A test suite is a complete set of tests for conformance testing of a particular protocol.
Elements of a test suite are tests, or test cases. A test case specifies one experiment,
related to one test purpose and to one conformance requirement. Related test cases
can be grouped into test groups with corresponding test group objective. Grouping can
occur at different levels.

Within a test case test stepsa and test events can be distinguished. A test event is one
interaction at a PCO, e.g sending or receiving one PDU. A test step groups successive
test events. An example of a test step is a preamble: a sequence of events that brings
the IUT in a state from which the body of the test case that tests the test purpose
can be tested. Analogously the postamble test step brings the IUT back to a specified
state, e.g. the initial state, after the main part of a test case has been executed.

The hierarchical structuring is applicable to all levels of test cases. Also conformance
requirements and test purposes can be grouped.

1.3.4 Test Implementation

Starting point for test implementation is the (standardized) abstract test suite. The
abstract test suite is specified independently of any real testing device. In the test
implementation phase it is transformed into an executable test suite, i.e. a test suite
which can be run on a specific testing device with a specific IUT.

Before starting to implement, a selection from the abstract test suite must be made. The
abstract test suite contains all possible tests for a particular protocol, for all possible
options. It does not make sense to test for options that are not implemented according



18 Chapter 1. Introduction

to the PICS. Therefore the tests relevant to the IUT are selected based on the PICS.
In ISO9646 this is called test selection1.

The PICS contains protocol dependent information. To derive executable tests this is
insufficient; also information about the IUT and its environment must be supplied. Such
information is called PIXIT (Protocol Implementation eXtra Information for Testing).
The PIXIT may contain address information of the IUT, or parameter and timer values
which are necessary to implement the test suite. The PIXIT, like the PICS, is supplied
by the supplier of the IUT to the testing laboratory. To guide production of the PIXIT
the testing laboratory provides a PIXIT proforma.

The selected and implemented test cases with parameter values according to the PIXIT
form the executable test suite, which can be executed on a real tester or test system.
During implementation care must be taken that the tests are implemented correctly,
according to the semantics of the test notation used for the specification of the abstract
test suite.

1.3.5 Test Execution

During the test execution phase a specific IUT is actually tested leading to a verdict
about conformance of the IUT. The first step consists of the static conformance review:
the PICS of the IUT is checked for internal consistency and compared with the static
conformance requirements of the standard. The second step consists of executing the
executable test cases on a real tester. The reactions of the IUT are observed and
compared with the reactions specified in the test case. For each test case a verdict
is assigned. The verdict is either pass , fail , or inconclusive. Pass indicates that the
test was executed successfully, and that the goal expressed in the corresponding test
purpose was achieved. Fail indicates that the implementation does not conform to
the specification with respect to the given test purpose. Inconclusive indicates that no
evidence of non-conformance was found, but that the test purpose was not achieved.

Example 1.3
Suppose the test purpose in the TTCN example in figure 1.6 is to check the cor-
rect connection establishment of the Transport Protocol, by testing the sequence of
actions T-PDU-connect-request, T-SP-connect-indication, T-SP-connect-response, T-
PDU-connect-confirm. If the IUT reacts with T-PDU-disconnect-request after having
received T-PDU-connect-request, the verdict inconclusive is assigned: this behaviour
is allowed according to the Transport standard, but the the verdict pass cannot be
assigned since the test purpose was not achieved.

2

Finally, the results of the static conformance review and the verdicts of all test cases
are combined, leading to a verdict about conformance of the IUT with respect to the
protocol specification. Normally the final verdict is pass if and only if no individual test

1Note that the notion of ‘test selection’ that we use, is different. It is discussed in chapter 6.



1.4. Labelled Transition Systems 19

resulted in the verdict fail. All results, including the final verdict, are documented in
the PCTR (Protocol Conformance Test Report).

1.4 Labelled Transition Systems

The formalism of labelled transition systems is used for modelling the behaviour of
processes, systems, and components. Labelled transition systems serve as a semantic
model for a number of specification languages, e.g. CCS [Mil80, Mil89], CSP [Hoa85],
ACP [BK85], and LOTOS [BB87, ISO89b].

Definition 1.4
A labelled transition system is a 4-tuple 〈S, L, T, s0〉 with

◦ S is a (countable) non-empty set of states ;

◦ L is a (countable) set of observable actions;

◦ T ⊆ S × (L ∪ {τ}) × S is the transition relation;

◦ s0 ∈ S is the initial state.
2

The labels in L represent the observable interactions of a system; the special label
τ 6∈ L represents an unobservable, internal action. Table 1.1 introduces some notation
for labelled transition systems (a·b is the concatenation of a and b, see appendix A).

In the following we assume a universe of observable actions L, and we denote the class
of all labelled transition systems over L by LTS. Moreover, we restrict LTS to labelled
transition systems that are strongly converging, i.e. ones with no infinite sequence of
internal actions.

1.4.1 Representation

Labelled transition systems are a suitable formalism to model distributed systems.
Simple systems can be represented by (action-) trees or graphs, where nodes represent
states, and edges labelled with actions, represent transitions.

Example 1.5
Figure 1.7 gives an example of a action tree representing the labelled transition system

〈 {s0, s1, s2, s3, s4, s5, s6, s7, s8},
{shilling , coffee-button, coffee, tea-button, tea},
{〈s0, shilling , s1〉, 〈s0, shilling , s2〉, 〈s1, coffee-button, s3〉, 〈s1, tea-button, s4〉,
〈s2, coffee-button, s5〉, 〈s3, coffee, s6〉, 〈s4, tea, s7〉, 〈s5, coffee, s8〉},

s0 〉

This labelled transition system models a vending machine, supplying coffee and tea.
The machine specifies as the first action insertion of a shilling, after which the machine



20 Chapter 1. Introduction

notation meaning

B µ−→C (B, µ, C) ∈ T
B µ1·...·µn−−−−−→C ∃B0 . . . Bn : B = B0

µ1−−→B1
µ2−−→ . . . µn−−→Bn = C

B µ1·...·µn−−−−−→ ∃C : B µ1·...·µn−−−−−→C

B
µ1·...·µn−−−−−−→/ ¬∃C : B µ1·...·µn−−−−−→C

B
ǫ
⇒C B = C or B τ ·τ ·...·τ−−−−−→C

B
a
⇒C ∃B1, B2 : B

ǫ
⇒B1

a−→B2
ǫ
⇒C, a ∈ L

B
a1·...·an

⇒C ∃B0 . . . Bn : B = B0
a1
⇒B1

a2
⇒ . . .

an

⇒Bn = C

B
a1·...·an

⇒ ∃C : B
a1·...·an

⇒C

B
a1·...·an

6⇒ ¬∃C : B
a1·...·an

⇒C

B
a1·...·an

→C (n = 0 and B = C) or

(∃B′ : B
a1·...·an−1

⇒B′ and B′ an−−→C)

Table 1.1: Notation for labelled transition systems.

r
r
r
r
r

r
r
rr
r

�
��@

@@

�
�

��Q
Q

QQ

tea

s2

shilling

coffee-button

coffee

tea-button

s0

s1

s6

s3 s4

s7

s5

s8

coffee

coffee-button

shilling

Figure 1.7: Action tree of a vending machine.



1.4. Labelled Transition Systems 21

moves nondeterministically to either s1 or s2. In s1 there is a choice between the actions
coffee-button and tea-button; in s2 only the coffee-button can be pushed. The action
coffee-button is followed by coffee; the action tea-button by tea.

2

For more complex systems such as protocols, a more sophisticated way of represen-
tation than graphs or trees is needed: a language that allows concise representations
of (infinite) labelled transition systems. We use the language of definition 1.6, which
is inspired by the formal description technique LOTOS [BB87, ISO89b]. The opera-
tional semantics of an expression in this language, a behaviour expression, is given by
a labelled transition system. It is defined in definition 1.7.

Definition 1.6
A behaviour expression B is defined by the syntax:

B =def stop | a; B | i; B | B2B | B|[G]|B | ΣB

with a ∈ L, the universe of observable actions, G ⊆ L, and B a set of behaviour
expressions.

BEX is the set of all behaviour expressions, i.e. the language of behaviour expressions.
We use ‖ as abbreviation for |[L]|, and ||| as abbreviation for |[∅]|.

The priority is such that ‘;’ binds stronger than ‘2’, which in turn binds stronger than
‘|[G]|’.

2

Definition 1.7
The operational semantics of the behaviour expression B ∈ BEX is the labelled transi-
tion system ℓts(B), defined by

ℓts(B) =def 〈 BEX , L, TBEX , B 〉

where TBEX ⊆ BEX × (L ∪ {τ}) × BEX is the smallest relation satisfying

B µ−→C =def

if B = a; C then µ = a,
if B = i; C then µ = τ,
if B = B1 2B2 then B1

µ−→C or B2
µ−→C,

if B = B1|[G]|B2 then ( B1
µ−→B′

1, µ 6∈ G and C = B′
1|[G]|B2 ) or

( B2
µ−→B′

2, µ 6∈ G and C = B1|[G]|B′
2 ) or

( B1
a−→B′

1, B2
a−→B′

2, a ∈ G and C = B′
1|[G]|B′

2 ),
if B = ΣB then ∃B′ ∈ B : B′ µ−→C.

2

In the next chapters we will not rigidly distinguish between B as a behaviour expression,
B as the initial state of its semantics ℓts(B), and the semantics itself. A process is
identified with the labelled transition system modelling that process, with the behaviour
expression B representing the labelled transition system, and with its initial state.



22 Chapter 1. Introduction

Example 1.8
The coffee-machine in example 1.5 can be represented by the behaviour expression

shilling ; (coffee-button; coffee; stop 2 tea-button ; tea; stop)
2 shilling ; coffee-button; coffee; stop

Other expressions define ‘the same’ labelled transition system, e.g. the following ex-
pression. What is ‘the same’ is elaborated in section 1.4.3.

( shilling ; (coffee-button; stop 2 tea-button ; stop)
2shilling ; coffee-button; stop )

|[coffee-button, tea-button ]|
(coffee-button; coffee; stop|||tea-button; tea; stop)

and
Σ { shilling ; Σ{coffee-button; coffee; stop, tea-button; tea ; stop},

shilling ; coffee-button; coffee; stop }

2

1.4.2 Traces

A trace is a sequence of observable actions. The set of all finite traces over L is denoted
by L∗, with ǫ denoting the empty sequence. The traces of a labelled transition system
specification S, traces(S), are all sequences of visible actions that S can perform. If S
can perform a trace σ then S can also perform any initial part of σ, called a prefix of
σ. The notion of prefix is formalized by the relation � ⊆ L∗ × L∗.

Definition 1.9

1. traces(S) =def { σ ∈ L∗ | S
σ
⇒}

2. A trace σ1 is a prefix of σ2, σ1 � σ2, if ∃σ′ : σ1·σ
′ = σ2. Since σ′ is unique we write

σ′ = σ2\σ1.
2

The relation � is reflexive, transitive and anti-symmetric, hence it is a partial order.
Moreover, there is no infinite sequence of distinct, prefixing traces, i.e. no sequence

. . . ≺ σ3 ≺ σ2 ≺ σ1 ≺ σ0

hence it is well-founded. More on well-foundedness in appendix A.

Proposition 1.10

1. 〈L∗,�〉 is a well-founded poset.

2. σ1 � σ2 and σ2 ∈ traces(S) imply σ1 ∈ traces(S)

3. traces(S) is prefix-closed, i.e. it is left-closed with respect to �

4. min�( traces(S) ) = {ǫ}



1.4. Labelled Transition Systems 23

2

We give some additional definitions for labelled transition systems. The set out(S)
contains traces of length 1; S after σ collects all states that can be reached after
having performed σ; the derivatives der(S) combine all these states for all possible σ.

Different notions of finiteness over labelled transition systems can be defined. If the
length of traces, denoted by |σ|, is bounded, a process is said to have finite behaviour .
For finite state processes the number of reachable states is finite. Such processes can
have traces of arbitrary length. In an image finite process the number of reachable states
be may infinite, as long as the number of states that can be reached for any particular
trace σ is finite. In a deterministic process the state that is reached after having
performed any trace is unique. Deterministic processes do not contain τ -transitions,
and the outgoing transitions of any state are uniquely labelled. Finally, a stable process
cannot move invisibly to another state.

Definition 1.11
Let S ∈ LTS, σ ∈ L∗:

1. out(S) =def { a ∈ L | S
a
⇒ }

2. S after σ =def { S ′ | S
σ
⇒S ′ }

3. der(S) =def { S ′ | ∃σ ∈ L∗ : S
σ
⇒S ′ }

4. S has finite behaviour if there is n ∈ N, such that ∀σ ∈ traces(S) : |σ| < n.

5. S is finite-state if der(S) is finite.

6. S is image-finite if ∀σ ∈ L∗ : S after σ is finite.

7. S is deterministic if for all σ ∈ L∗, S after σ has at most one element. If σ ∈
traces(S), then we write S after σ for this element.

8. S is stable if S
τ

−−→/ .
2

Example 1.12
The labelled transition system in figure 1.7 has finite behaviour, is finite-state, image-
finite, and stable, but not deterministic. S after shilling ·coffee-button = { s3, s5 },
out(S) = {shilling}, and der(S) = {s0, s1, s2, s3, s4, s5, s6, s7, s8}.

2

1.4.3 Equality

Labelled transition systems are used to model the observable behaviour of distributed
systems and protocols. As such they are a suitable formalization of the notion of a
process. However, ‘some behaviours are more equal than others’: it may occur that
different labelled transition systems intuitively describe the same observable behaviour,
e.g. when an action τ occurs, which is assumed to be unobservable, or when a state
has two equally labelled outgoing transitions to the same state. Therefore equivalence



24 Chapter 1. Introduction

relations have been defined based on the notion of observable behaviour, and equal-
ity of behaviour is studied with respect to equivalence classes. A lot of equivalence
relations are known from literature: observation equivalence [Mil80], strong and weak
bisimulation equivalence [Par81, Mil89], failure equivalence [Hoa85], testing equivalence
[DNH84], failure trace equivalence [Bae86], generalized failure equivalence [Lan90], and
many others. A few equivalences are mentioned here; chapters 3 and 5 discuss more of
them. In particular testing equivalence, the one that is most used in the next chapters,
is discussed in section 3.2.

In comparing labelled transition systems the first observation is that the names of states,
nor the existence of states that cannot be reached during any execution, influence the
observable behaviour. Two labelled transition systems are isomorphic if their reachable
states can be mapped one-to-one to each other, preserving transitions and initial states.
In fact we already used this with the behaviour expressions in example 1.8: the formal
semantics ℓts(B) of these expressions contain the infinite set of states, consisting of all
behaviour expressions.

The second observation is that equally labelled transitions to states with equivalent be-
haviour cannot be discerned. Strong bisimulation equivalence ∼ identifies such systems.

Weak bisimulation equivalence ≈ requires a relation between the reachable states of two
systems that can simulate each other: if one can perform a trace σ, the other must be
able to do the same, and vice versa, and the resulting states must simulate each other
again.

If the traces of two systems are equal they are called trace equivalent ≈tr .

Definition 1.13
Let S1, S2 ∈ LTS, S1 = 〈S1, L, T1, s01〉, S2 = 〈S2, L, T2, s02〉:

1. S1 and S2 are isomorphic, S1 ≡ S2, if there exists a bijection f : der(S1) → der(S2),
such that ∀s1, s2 ∈ der(S1), µ ∈ L ∪ {τ}: s1

µ−→ s2 iff f(s1)
µ−→ f(s2), and

f(s01) = s02 .

2. S1 ∼ S2 =def ∃R ⊆ der(S1) × der(S2), such that 〈s01 , s02〉 ∈ R, and
∀〈s1, s2〉 ∈ R, ∀µ ∈ L ∪ {τ} :
∀s′1 : if s1

µ−→ s′1 then ∃s′2 : s2
µ−→ s′2 and 〈s′1, s

′
2〉 ∈ R; and

∀s′2 : if s2
µ−→ s′2 then ∃s′1 : s1

µ−→ s′1 and 〈s′1, s
′
2〉 ∈ R

3. S1 ≈ S2 =def ∃R ⊆ der(S1) × der(S2), such that 〈s01 , s02〉 ∈ R, and
∀〈s1, s2〉 ∈ R, ∀σ ∈ L∗ :

∀s′1 : if s1
σ
⇒ s′1 then ∃s′2 : s2

σ
⇒ s′2 and 〈s′1, s

′
2〉 ∈ R; and

∀s′2 : if s2
σ
⇒ s′2 then ∃s′1 : s1

σ
⇒ s′1 and 〈s′1, s

′
2〉 ∈ R

4. S1 ≈tr S2 =def traces(S1) = traces(S2)
2

Proposition 1.14

1. ≡ , ∼ , ≈ , and ≈tr are equivalences.

2. ≡ ⊂ ∼ ⊂ ≈ ⊂ ≈tr



1.4. Labelled Transition Systems 25

2

Also many non-equivalence relations over labelled transition systems can be defined. In
the next chapter they will be shown to be well suited to express the relation between
a specification and an implementation. Using the concepts introduced until now two
prominent ones are trace preorder ≤tr and its inverse ≥tr . Others, which are actually
more important for the formalization of testing, will be introduced in chapters 3 and 5.

Definition 1.15
Let S1, S2 ∈ LTS:

1. S1 ≤tr S2 =def traces(S1) ⊆ traces(S2)

2. S1 ≥tr S2 =def traces(S1) ⊇ traces(S2)
2

Proposition 1.16

1. ≈tr = ≤tr ∩ ≥tr

2. ≤tr and ≥tr are preorders
2



26 Chapter 1. Introduction



Chapter 2

A Formal Framework for
Conformance Testing

2.1 Introduction

Current techniques for protocol conformance testing are based on the standard ISO
IS-9646: ‘OSI Conformance Testing Methodology and Framework’ [ISO91a], which is
mainly intended for specifications written in a natural language. To study formal meth-
ods in conformance testing a formal framework is needed, in which conformance testing
concepts, such as conformance requirement, correctness of an implementation, test case,
verdict assignment, etc. are defined in a formal setting. In this chapter such a formal
framework is developed by exploring the consequences of formally specifying protocols
for the testing methodology of ISO9646.

Our starting point is the description of concepts as given in ISO9646 (see section 1.3).
These are interpreted assuming that the protocol specification is given by means of
a formal description (FD). This leads to formal definitions of these concepts such as
conformance requirement, the meaning of conformance, PICS, test purpose, generic and
abstract test case, test method, verdict, and PIXIT, in section 2.2. The presentation
concentrates on the process of test generation, and not all aspects of ISO9646 will be
completely dealt with; for a complete formal interpretation of ISO9646 elaborations
are needed. In section 2.3 the formalized concepts are related to existing notions of
conformance in concurrency theory based on preorder relations. Section 2.4 illustrates
the presented ideas using the specification formalism of labelled transition systems.
Finally, section 2.5 sums up the main ingredients of the formal framework for use in
the following chapters.

27



28 Chapter 2. A Formal Framework for Conformance Testing

2.2 Formal Interpretation of ISO IS-9646

Considering the three phases of the conformance testing process according to ISO9646
(section 1.3.1), it is evident that the use of formal specifications has most impact in
the test generation phase. This section gives an interpretation in a formal context
of some concepts of ISO9646, with emphasis on this phase. The presentation follows
the ISO9646 test generation methodology as described in sections 1.3.2 and 1.3.3. It
considers in turn conformance requirements and the meaning of conformance, the PICS,
test purposes, test cases in general, and generic and abstract test cases separately.
The relation with practical test generation algorithms and limitations of testing are
discussed. This section concludes with a discussion of the PIXIT in a formal context.

2.2.1 The Meaning of Conformance

The starting point for conformance testing is the definition of what constitutes confor-
mance. ISO9646 states that a conforming implementation is an implementation ‘which
satisfies both static and dynamic conformance requirements, . . . ’ [ISO91a, part 1, sec-
tions 3.4.10 and 5.6] (see section 1.3.2).

It follows that

◦ the relevance of a protocol standard with respect to testing is its set of conformance
requirements;

◦ a conforming implementation shall satisfy all conformance requirements.

In order to make this more formal, we will introduce some notation:

◦ A specification S in a particular standard can be written as

S = {r1, r2, r3, . . .}

where each ri is a conformance requirement.

◦ The fact that an implementation I satisfies a particular conformance requirement
r is denoted by

I sat r

◦ A conforming implementation is one which satisfies all requirements in the stan-
dard:

∀r ∈ S : I sat r (2.1)

which will be abbreviated to
I sat S

In a natural language specification the requirements are expressed in natural language,
e.g.

r = ‘after receiving a Connect-Request-PDU the protocol shall respond
with either a Connect-Indication-PDU or a Disconnect-PDU’



2.2. Formal Interpretation of ISO IS-9646 29

Formal requirements are expressed in a formal language with precisely defined syntax
and semantics. Requirement r could be expressed in a fictitious language as

?Con-Req-PDU → (!Con-Ind-PDU ∨ !Dis-Con-PDU)

where ? denotes receiving, ! sending, → sequentiality of actions, and ∨ choice between
actions.

The formal language in which requirements are expressed is denoted by LR. Identifying
a formal language with the set of all possible expressions in that language, so that LR

is the set of all possible requirements, we have that any specification S is a subset of
LR:

S ⊆ LR

Languages that express requirements, or properties, are logical languages. Such lan-
guages allow expressions that are either true or false for a given system. Examples of
logical languages that are used for protocol specification are Z [Spi89], Temporal Logic
[Pnu86], and Hennessy-Milner Logic [HM85, Lar90]. Logical languages are powerful,
however, in the design and specification of systems they have a disadvantage: they are
non-constructive. This lack of constructivity makes it difficult to relate the structure
of the specification to the structure of the system being specified, and consequently,
implementation or prototyping based on such logical specifications is difficult.

This disadvantage is one of the reasons that current standardized FDTs (Estelle, LO-
TOS, SDL) are not based on logical languages. Formal descriptions in these FDTs do
not define conformance requirements or properties; they define observable behaviour.
For conformance testing, however, it is important to know which requirements are im-
plicitly defined by the expressions in the FDT.

Let LFDT be the language of the FDT, and let B ∈ LFDT be an expression defining
observable behaviour, then the fact that B specifies a particular requirement r ∈ LR is
written as

B spec r

By introducing the relation spec, the set of all requirements specified by an expression
B ∈ LFDT is implicitly defined as:

SB = {r ∈ LR | B spec r} (2.2)

Combining (2.1) and (2.2), we have for an implementation I that conforms to B:

∀r ∈ {r ∈ LR | B spec r} : I sat r

or, equivalently:
∀r ∈ LR : B spec r implies I sat r (2.3)

In this way conformance is defined as a relation between implementations and behaviour
specifications, saying that an implementation conforms to a specification if every re-
quirement specified by the behaviour specification is satisfied by the implementation.



30 Chapter 2. A Formal Framework for Conformance Testing

Behaviour specifications are elements of the formal language LFDT . Implementations,
on the other hand, are not necessarily formal objects. They can be non-formal realiza-
tions or concrete products. For the moment the only assumption that we make about
implementations is the existence of a class of all possible implementations. Let IMPL
be this class, then conformance can be expressed as a relation between IMPL and LFDT :

conforms-to ⊆ IMPL × LFDT (2.4)

defined by equation (2.3)

I conforms-to B =def ∀r ∈ LR : B spec r implies I sat r (2.5)

Given a class of implementations IMPL and a behaviour specification formalism LFDT

this still leaves freedom in defining conformance by varying LR, spec, and sat.

Note that LR and LFDT are different kinds of languages which are both necessary
in this approach: to define conformance a logical language to express conformance
requirements is needed; to specify behaviour in a constructive manner a behavioural
specification formalism is needed.

Conformance in a Logical Model

A specification S is a set of requirements, i.e. a set of formulae in the logical language
LR. This corresponds to the logical concept of a theory [Dal80]: given a logical language
a theory is a set of formulae in that language.

The meaning of a logical language is usually given by a satisfaction relation, denoted
by ‘|=’. This is a relation between a class of structures, the models of the language, and
the formulae of the language, expressing the fact that a formula holds for a particular
structure. In our case, the class of implementations IMPL may be considered to be the
class of models, where the satisfaction relation is given by sat. With this interpretation
a conforming implementation I is one that satisfies all formulae in S and it therefore
corresponds to the logical concept of a model of S.

The same applies to spec: it could also be considered as a satisfaction relation ‘|=’
when the class of models is taken to be LFDT . So it follows from (2.2) that also B, with
the satisfaction relation spec, is a model of S.

The two satisfaction relations sat and spec are closely related but not identical: spec
takes models from LFDT , which are formal objects, and sat takes models from IMPL,
which could be non-formal realizations or concrete products.

Having S as a logical theory in the logical language LR a lot of related concepts from
logic can be introduced. An example is the definition of a derivation system for LR, i.e.
a formal system of axioms and inference rules. It introduces the concept of derivation
in LR:

S ⊢ r



2.2. Formal Interpretation of ISO IS-9646 31

Preferably, the derivation system is defined in such a way that S ⊢ r if and only if every
I that satisfies S also satisfies r, i.e. it should be sound and complete.

Other logical concepts, like the consistency, the deductive closure, and logical indepen-
dence of a specification, are discussed in the examples in section 2.4.4.

2.2.2 PICS

As explained in section 1.3.2, most standards do not uniquely define the behaviour of
a protocol, but they leave some space for an implementer to choose between different
functions and options. The requirements on a minimum set of capabilities, and on con-
sistency of the options chosen, are stated in the static conformance requirements of the
standard. The PICS proforma lists all possibilities for the selection of options. The im-
plementer states the implemented options in the Protocol Implementation Conformance
Statement (PICS).

The allowance for different capabilities and options in standards means that specifi-
cations in standards are parameterized. Standards define a set of possible protocols,
one possible protocol for each choice of options, i.e. for each choice of values for the
parameters.

Comparing with ISO9646 terminology: the PICS-proforma is the formal parameter of
the specification; the PICS is the actual parameter, which is substituted for the formal
parameter for a particular protocol implementation. Static conformance requirements
(SCR) define constraints on the value of the PICS.

Thus, we should write a protocol specification S as a parameterized specification, with
formal parameter PICS-proforma of the type, i.e. the set of all possible correct values,
determined by the static conformance requirements: SCR-type. Using a notation well-
known from programming languages, this is expressed as

S(PICS-proforma : SCR-type)

An instantiation of S for a particular implementation I with associated PICSI is given
by

S(PICSI)

The static conformance review corresponds to checking whether the PICS has a valid
value, i.e. whether the PICS is of the type defined by the SCR: PICS ∈ SCR-type. This
is analogous to parameter ‘type-checking’ in conventional programming languages.

The set of requirements SB(PICSI) derived from the behaviour B defines the dynamic
conformance requirements for implementation I.

This notion of parameterization straightforwardly extends to expressions in LFDT defin-
ing behaviour:

B(PICS-proforma : SCR-type)



32 Chapter 2. A Formal Framework for Conformance Testing

Thus, a parameterized behaviour expression in LFDT defines a function from SCR-type
to behaviour specifications. Each correct instantiation defines a behaviour.

Summarizing, using formula (2.3): given a behaviour specification of a protocol in an
FDT, B(PICS-proforma : SCR-type), and an implementation I with associated PICSI ,
then

I with PICSI conforms to B(PICS-proforma : SCR-type)
=def

PICSI ∈ SCR-type
and ∀r ∈ LR : B(PICSI) spec r implies I sat r

(2.6)

2.2.3 Test Purposes

The first step towards the generation of an abstract test suite is the development of one
or more test purposes for each conformance requirement (section 1.3.3).

Natural Language Test Purposes

ISO9646 introduces a test purpose as ‘a prose description of a narrowly defined objective
of testing, focusing on a single conformance requirement.’ [ISO91a, part 1, section
3.6.5]. To analyse how test purposes are obtained from a conformance requirement we
will study an example.

First observe that in a natural language specification all conformance requirements are
mentioned explicitly in the standard, and thus, S is necessarily finite. Suppose that a
standard mentions as such a requirement

‘7-bit data-packets shall be sent in 8-bit PDUs,
where the 8th bit is the parity bit’

(2.7)

From this requirement many additional requirements can be derived. In this case we
can derive 128 requirements:

0000 000 shall be sent as 0000 0000
0000 001 shall be sent as 0000 0011
...

The original requirement (2.7) is untestable in practice. For testing we do not take (2.7),
but a selection of the derived requirements. Three test purposes selected from the
derived requirements of (2.7) are:

test whether 0000 000 is sent as 0000 0000
test whether 1111 111 is sent as 1111 1111
test whether 1001 100 is sent as 1001 1001



2.2. Formal Interpretation of ISO IS-9646 33

Thus, in the derivation of test purposes two steps can be recognized:

◦ derivation of (additional) testable requirements

◦ selection of testable requirements

Formal Test Purposes

Formally, the set of dynamic conformance requirements SB of a behaviour specification
B for an implementation with associated PICSI , is given by equation (2.2):

SB = {r ∈ LR | B(PICSI) spec r}

First observe that contrary to a natural language specification SB need not, and in
general will not, be finite. Normally there will be infinitely many formulae that B
specifies (see also the examples in section 2.4).

In our interpretation of spec, SB includes all requirements expressible in the language
LR that are specified by B, whether this occurs directly or indirectly. Therefore addi-
tional requirements cannot be derived from SB, so the first step in the derivation of test
purposes as given for the natural language method does not exist here. Thus, deriving
test purposes amounts to selecting a ‘testable’ subset P of SB. This subset P should
be finite, since for each test purpose at least one test case will be generated, and we
would like to end up with a finite set of test cases:

P ⊆ SB, P = {p1, p2, . . . , pm}

The selection of a testable set of test purposes P ⊆ SB is crucial, e.g. for the coverage
of the generated abstract test suite. On the other hand this aspect is the most difficult
to formalize. Heuristic methods will have to guide the selection process. [ISO91a, part
2, section 10.4] gives hints on the selection of test purposes. The formalization of the
selection process is studied in chapter 6.

2.2.4 Test Cases

Once a finite set of test purposes P = {p1, p2, . . . , pm} that adequately covers all as-
pects of the protocol has been selected, the next step is to determine whether I sat pi

for each test purpose pi. In principle, there are two ways to determine this, viz. by
formal verification and by experimentation or testing (cf. section 1.1.2). Formal verifi-
cation means that mathematical methods are used to determine whether I sat pi. A
requisite for using verification is that the implementation I is a formal object. Since
our implementations are mostly non-formal objects, which are not amenable to formal
verification, we will have to rely on testing. This means that for each test purpose pi

an experiment or test ti has to be found such that from the observations of testing I
with ti satisfaction of pi can be concluded.



34 Chapter 2. A Formal Framework for Conformance Testing

Test Application

A test case t specifies behaviour to be performed by an environment of the implemen-
tation, hence it is expressed in some behavioural formalism LT , which is referred to
as the test notation. LT could be (but need not necessarily be) the same as LFDT . It
should be powerful enough to describe any environment of the implementation and to
specify experiments performed by that environment.

Let t ∈ LT be a test case, and let I be the implementation under test, then we denote
the application of t to I by

apply(t, I)

The result of apply(t, I) is a verdict, i.e. a statement about the success or failure of the
application of the test case to I. The function apply models the execution of a test case.

Test Validity

Developing test cases means that for each test purpose pi ∈ P , 1 ≤ i ≤ m, we have to
find a test case ti ∈ LT such that from the observations of the application of ti to I
satisfaction of pi can be concluded, i.e. we have to find a test case ti that is valid with
respect to pi. Validity means that a test case really tests what it is intended for.

If, analogous to ISO9646, successful application is given the verdict pass, and unsuc-
cessful application the verdict fail, then validity of a test case t with respect to a test
purpose p is expressed by:

apply(t, I) = pass iff I sat p (2.8)

This kind of validity is called strong validity. It assumes that the result of test applica-
tion is either pass or fail, i.e. that satisfaction of the test purpose can always be decided
from application of the corresponding test case. In some situations it may happen that
this decision can not be made based on testing. Due to limitations in observability and
controllability it is possible that no evidence of failure can be found, while on the other
hand also satisfaction of the test purpose can not be concluded. For such cases we allow
a ‘don’t know’ result of apply(t, I). Analogous to ISO9646 it is expressed by the verdict
inconclusive.

A consequence is that the right-to-left implication of equation (2.8) does not hold: if
I sat p then apply(t, I) can be pass or inconclusive. We adapt equation (2.8) by
saying that a test case is valid if it is not the case that I sat p and apply(t, I) = fail,
or I /sat p and apply(t, I) = pass. We refer to this notion of validity as weak validity :

{

apply(t, I) = fail implies I /sat p, and
apply(t, I) = pass implies I sat p

(2.9)



2.2. Formal Interpretation of ISO IS-9646 35

Test Validation and Test Hypothesis

The process of checking the validity of test cases with respect to their test purposes
is called test validation. For test validation we have to verify equation (2.8), respec-
tively (2.9), for all possible implementations. However, implementations as they occur
in equations (2.8, 2.9) can be non-formal objects, not amenable to verification. It is
only possible to verify these equations for all possible implementations, if we put an
additional assumption on our class of implementations IMPL: we assume that we can
model implementations by a formalism LIMPL with which we can represent implemen-
tations, and which is amenable to verification. Let each possible implementation I be
modelled by an element BI ∈ LIMPL, such that all relevant aspects of I are represented
by BI , then checking a test case t for strong validity with respect to a test purpose p
corresponds to verifying

∀BI ∈ LIMPL : apply(t, BI) = pass iff BI sat p (2.10)

Thus the function apply : LT × LIMPL → {pass, fail} models the application of test
cases to models of implementations. Analogously sat can now be stated more precisely
as a relation between models of implementations and requirements: sat ⊆ LIMPL×LR.

The analogous requirement for weak validity is:

∀BI ∈ LIMPL :

{

apply(t, BI) = fail implies BI /sat p, and
apply(t, BI) = pass implies BI sat p

(2.11)

where apply : LT × LIMPL → {pass, fail, inconclusive} .

If we are looking for a language LIMPL, the first candidate is LFDT . The language
LFDT is used to specify unambiguously the relevant, external behaviour of protocols.
As such it can also be used to describe the behaviour of implementations of these
protocols. Other choices for LIMPL are possible. An example is a specification that
contains nondeterministic behaviour, whereas implementations are assumed to behave
completely deterministically. In such a case a language can be chosen for LIMPL that
does not allow nondeterministic behaviour, e.g. a suitable sublanguage of LFDT .

The assumption that any concrete I can be represented by some model in LIMPL is
referred to as the test hypothesis (cf. [Ber91]). Intuitively, it is the assumption that
we know something about our implementation under test, in this case that it is an
implementation of a protocol, and not something completely different, and that such
implementations can be conveniently modelled using LIMPL. We can also say that the
test hypothesis expresses that the IUT is ‘sufficiently close to the specification’ to make
testing useful [Ber91]. Without such a test hypothesis functional, black box testing, i.e.
testing based on specifications, is generally impossible.

An example of a test hypothesis is that we assume our implementation to behave like
a finite state machine (FSM), in case we have an FSM specification. We do not know
which FSM is a model of the implementation, only that there is such a model, which we
could construct if we had enough knowledge about the interior of the implementation.



36 Chapter 2. A Formal Framework for Conformance Testing

Some algorithms for test generation from FSMs make even stronger assumptions, e.g.
on the number of states in the FSM modelling the implementation. It is assumed that
this number is less than m times the number of states in the specification, where m
must be known [Cho78]. The larger m is chosen, the weaker the test hypothesis is, the
more possible implementations are considered, and the larger the number of test cases
is that the algorithm generates. The test hypothesis serves as a test selection criterion.

Test Runs

The test application of a test case t to an implementation I as modelled by the function
apply may consist of executing several test runs. A test run is understood as one exe-
cution of the test case with the implementation under test. Due to nondeterminism a
particular test run may lead to behaviour which is correct but which is not intended in
the sense that no observation can be made from which satisfaction of the test purpose
can be concluded. An observation of a test run can be anything, e.g. pass, fail, or
inconclusive, logs of all occurred events, the occurrence of deadlock, etc. Test ap-
plication of a test case consists of one or more test runs with the same test case, and
assignment of the verdict pass or fail, based on the combined observations of all test
runs.

To express this formally we first introduce a class Ω of possible observations of test
runs. Since different test runs may lead to different observations in Ω, a test run is a
relation run ⊆ LT × IMPL × Ω, with run(t, I, ω) expressing the fact that a test run of
test case t with implementation under test I may lead to observation ω. All possible
observations of t and I are collected in a set

runs(t, I) = { ω ∈ Ω | run(t, I, ω) }

The set of results of all runs with the same test case is evaluated, culminating in a
verdict for test application:

apply(t, I) = eval(runs(t, I)) (2.12)

An example of such an evaluation when each test run can have as a result pass, fail,
or inconclusive, is:

eval(V ) =

{

fail if fail ∈ V
pass if fail 6∈ V

See also the examples in section 2.4.5.

2.2.5 Generic Test Cases

In the test generation process ISO9646 distinguishes between different kinds of test
cases. As a first step towards finding a set of abstract test cases, i.e. a test suite that
is implementation independent and suitable for standardization, ISO9646 recommends



2.2. Formal Interpretation of ISO IS-9646 37

that a generic test case1 be developed for each test purpose (section 1.3.3). The set of
generic test cases is the generic test suite GTS:

GTS = {g1, g2, . . . , gm}

A generic test case gi is the specification of an experiment that could be applied to I
with ideal controllability and observability. In fact, the test case gi is the operational
‘mirror-image’ of the test purpose pi: whereas pi describes the required property of
I, gi describes the required behaviour of the environment of I in order to test for pi

(figure 2.1).

implementation
IUT

tester
T

Figure 2.1: Testing with generic test cases.

Developing a generic test suite means that for each test purpose pi ∈ P , 1 ≤ i ≤ m, we
have to find a generic test case gi ∈ LT that is valid with respect to pi.

Validity of Generic Test Cases

A generic test case gi specifies behaviour to be performed by an ideal environment of
the implementation. Since conformance requirements, and thus test purposes, should
only specify the external behaviour of the implementation, i.e. how the implementation
interacts with its environment, it follows that a generic test case must always be able
to decide about satisfaction of the corresponding test purpose. Saying it the other way
around: if there is no generic test case, i.e. no ideal environment that can distinguish
between implementations satisfying and not satisfying a test purpose, then there is no
environment at all that can make the distinction. Hence such a test purpose does not
specify a requirement on the external behaviour of the implementation.

As a consequence the ‘don’t know’ verdict inconclusive is not appropriate as a result
of the application of a generic test case; the result is always pass or fail. Hence for
generic test cases strong validity is required (2.10)2.

1[ISO91b] introduces the term conceptual test case for this kind of ‘ideal’ test case, in order to avoid
confusion with [ISO91a], where in some contexts ‘generic’ is used with a slightly different meaning.
‘Conceptual’ refers to the conceptual testing architecture in [ISO91a, part 1, section 7.3.1].

2This notion of validity of generic test cases differs from [TKB92] (which agrees with [ISO91b]),
where weak validity is required. Following the above argumentation we are in favour of requiring strong
validity for generic test cases.



38 Chapter 2. A Formal Framework for Conformance Testing

Being an ideal environment means that a generic test case is not necessarily realiz-
able in practice. Consequently, application of a generic test case may correspond to
virtual application: e.g. it may include infinitely many runs of a test case with the
implementation, or runs of infinite length.

2.2.6 Abstract Test Cases

The final step in the test generation process (section 1.3.3) is the derivation of an ab-
stract test case for each generic test case. This involves the transformation of each
generic test case gi into an abstract test case ai, taking into account the testing envi-
ronment in which an implementation is tested, i.e. taking into account the test method.

As explained in section 1.3.3 different aspects can be distinguished in the test method:
accessibility of the boundaries of the IUT, the service boundaries from where the IUT
can be observed and controlled, positioning of the tester in the SUT, and the distribution
of testing functions. These aspects restrict the way in which the tester can control and
observe the implementation:

1. When the tester is positioned in another computer system than the IUT, testing
must be done via an underlying service provider. When the service boundaries
from where the IUT can be observed and controlled do not coincide with the
boundaries of the IUT, testing must be done via the surrounding protocol layers of
the IUT. In both cases the access points of the IUT are not directly accessible to
the tester. There is something between the tester and the IUT: the test interface
or test context (figure 2.2, cf. figure 2.1).

2. Accessibility of the boundaries of the IUT can be restricted, in the sense that some
access points of the implementation are not accessible at all. An example is the
upper service boundary in the remote test method.

3. Distribution of access points at the boundary of the implementation imposes a
distribution of testing functions. An example is the distribution between an upper
SAP (service access point) and a lower SAP. A test coordination procedure is
needed to coordinate these testing functions, e.g. between an upper tester and
a lower tester. This distribution has some analogy with the decomposition of a
service into protocol entities. It may cause difficulties in relating observations made
by the distributed testers, e.g. the order of two events cannot be reconstructed if
they are observed by separate testers [BDZ89].

Let the implementation I have the access points (e.g. SAPs) iap1, iap2, . . . , iapk on its
boundary. They make up the boundary as given by the specification. We call them
Implementation Access Points, and the complete set of them:

IAPs = {iap1, iap2, . . . , iapk}

Because of restriction (2) we can only access a subset of them:

IAPs ′ ⊆ IAPs



2.2. Formal Interpretation of ISO IS-9646 39

implementation
IUT

test 
interface

C

IAPs
implementation
access points

tester
T

PCOs
points of control
and observation

Figure 2.2: Test interface.

The IAPs ′ cannot be accessed directly, but, because of restriction (1), only via the
test interface. The points on the boundary of the test interface that are accessible to
the tester are the Points of Control and Observation ([ISO91a, part 1, section 3.8.1],
section 1.3.3):

PCOs = {pco1, pco2, . . . , pcol}

The test interface C relates the actions at the PCOs and the actions at the IAPs ′. In
order to base the transformation from generic to abstract test cases on formal methods, a
formal description of the behaviour of C is needed, either as an expression BC ∈ LFDT , or
as a set of properties SC ⊆ LR. Conformance of the implementation of the test interface
to this description is normally only assumed, and not checked. This assumption is part
of the test hypothesis (section 2.2.4) for abstract testing.

Restriction (3) leads to a partition of PCOs (a division of PCOs in disjoint subsets,
together forming the whole set PCOs), where each subset represents a (geographical)
location.

Example 2.1
Figure 2.3 shows an instance of this general abstract testing architecture. The im-
plementation I interacts with its direct environment, the test interface C, via three
implementation access points: IAP1, IAP2, and IAP3. There are two points on the
boundary of the test interface that are accessible to the tester: PCO1 and PCO2. Only
the subset {IAP1, IAP2} ⊆ {IAP1, IAP2, IAP3} can be accessed via {PCO1,PCO2}:
IAP1 can be controlled and observed through PCO1, IAP2 can be controlled and ob-
served through PCO2, and IAP3 cannot be controlled or observed by the tester. The
testing functions are distributed over T1 and T2, with a test coordination procedure to
establish the combined operation of T1 and T2 as observed by the test interface.

In figure 2.4 two concrete instances of the testing architecture are shown. Figure 2.4(a)
shows the remote test method [ISO91a, part 2, section 12.3.5]. In the remote test
method the IUT is tested via the underlying service. There is only one PCO : the
remote SAP of the underlying service. It controls and observes IAP 1, the lower SAP of



40 Chapter 2. A Formal Framework for Conformance Testing

implementation
IUT

test 
interface

C

tester

IAP1

IAP3

test
coordination
procedure

PCO1

PCO2

tester

IAP2

T2

T1

Figure 2.3: Test interface with distributed testers.

the IUT, via the underlying service provider, which constitutes the test interface. The
remote test method does not require access to the upper service boundary of the IUT;
IAP2, the upper SAP of the IUT, is not accessible to the tester.

In figure 2.4(b) both PCOs are situated in the SUT, while the IUT is embedded in
other protocol layers. The test interface consists of two parts: the protocols between
the upper SAP of the IUT and the upper tester constitute the upper part of the test
interface, and the protocols between the lower SAP and the lower tester constitute the
lower part of the test interface. The test coordination procedure is realized entirely
within the test system.

2

Developing abstract test cases means that for each generic test case gi ∈ GTS, 1 ≤
i ≤ m, we have to find an abstract test case ai, such that the result of applying ai is
valid with respect to the (virtual) application of gi. Generic test cases are generally too
ideal for a realistic testing environment, where controllability and observability of the
IUT are limited. Whereas a generic test case gi is expressed in terms of control and
observation of IAPs, the corresponding abstract test case ai is expressed in terms of
control and observation of PCOs. One could also say that for generic test cases IAPs
and PCOs coincide.

Validity of Abstract Test Cases

Because of the limitations in controllability and observability it is possible that using an
abstract test case we cannot conclude about satisfaction of a test purpose, while using
the corresponding generic test case we can. Representing the execution of an abstract
test case a ∈ LT by the function apply (section 2.2.4), this implies that inconclusive



2.2. Formal Interpretation of ISO IS-9646 41

(a)   Remote test method

underlying service   =   test interface

T

upper tester

upper
test interface

IUT

lower tester

IAP1

PCO1

IAP2

PCO2

(b)   Embedded testing

lower
test interface

IAP2

IAP1PCO

IUT

Figure 2.4:



42 Chapter 2. A Formal Framework for Conformance Testing

can occur as verdict, and validity is defined by (2.11). Hence, the resulting verdict of
applying an abstract test case a need not be the same as the verdict of its corresponding
generic test case g, but it may not contradict the result of the generic test case:

∀BI ∈ LIMPL :

{

apply(a, BI) = fail implies apply(g, BI) = fail, and
apply(a, BI) = pass implies apply(g, BI) = pass

(2.13)

Note that introducing inconclusive as a verdict allows that an abstract test case that
always gives the verdict inconclusive is valid. However, such a test case is not useful,
in the sense that it will never extract any information about the IUT that is being
tested. In deriving abstract test cases we are not only interested in valid test cases,
but also in useful test cases, i.e. test cases that extract as much information as possible
from the IUT given the limitations of the test method.

Remark 2.2
Due to limitations in observability and controllability introduced by a test method, it
may even happen that no useful abstract test case can be specified for a generic test
case g. This means that application of g to the implementation I, apply(g, I), cannot
be realized in practice for that test method.

For the same reason, the second requirement for a to be valid with respect to a test
purpose p (2.11), viz.

apply(a, I) = pass implies I sat p

may be too strong. Making a definite decision I sat p based on testing may sometimes
be practically unfeasible. In such a case we leave the mathematical rigour of equa-
tion (2.11), and assign the verdict pass when we have enough confidence that I sat p.
By elaborating these thoughts we enter the fields of probabilistic testing : application of
a test case gives a probability that the implementation has a certain property, and of
probabilistic specification: a requirement specifies the probability with which an imple-
mentation shall have a certain property [LS89, Chr90a].

2

2.2.7 Test Generation in Practice

In figure 2.5 the test suite generation process as proposed in the previous sections is
sketched. This process is a kind of ‘normal form’ (this term comes from [ISO91a, part
2, section 8]) for test suite generation from formal specifications. It provides a formal
basis for the generation of valid test cases. However, generation of test cases for a
particular protocol specified by B(PICS-proforma : SCR-type) need not strictly follow
this strategy, in which all intermediate steps are produced explicitly. This may not
even be possible since the number of requirements in SB could be infinite. The given
strategy must be seen as a guide-line and a reference point for correctness of a given
algorithm for test case generation. In case of formal methods it is necessary that any
algorithm used will result in provably correct results, referring to the normal form for
the test generation process.



2.2. Formal Interpretation of ISO IS-9646 43

specification in standardized FDT:
B(PICS-proforma : SCR-type) ∈ LFDT

?

instantiated specification:
B(PICS) ∈ LFDT

?

conformance requirements:
SB = {r ∈ LR | B(PICS) spec r} ⊆ LR

?

test purposes:
P = {p1, p2, . . . , pm} ⊆ SB ⊆ LR

?

generic test cases:
GTS = {g1, g2, . . . , gm} ⊆ LT

?

abstract test cases:
ATS = {a1, a2, . . . , am} ⊆ LT

Figure 2.5: Overview of the ‘normal form’ of the test generation process.



44 Chapter 2. A Formal Framework for Conformance Testing

Examples of test generation techniques that generate test cases directly from the be-
haviour specification B ∈ LFDT , without first deriving conformance requirements and
test purposes explicitly, are Unique Input/Output sequences for finite state machines
[ADLU88, BU91], the CO-OP method for LOTOS [Wez90], and the methods for test
generation that will be presented in the chapters 4 and 5. Such methods can be used
if they can be proven to give results which are equivalent to the ones obtained by the
normal form test generation process (figure 2.6(a)).

�

?

?

?

?

�

�
�

�
�

��	

@
@

@
@

@@R

�
�

�
�

��	

@
@

@
@

@@R

B

SB

P

parameterized
substitution

generation

test generation

PICS
substitution

PICS

test

(a) Relation with existing

GTS

ATS

test generation methods

ATS(PICS-proforma : SCR-type)

ATS

BS(PICS)

BS(PICS-proforma : SCR-type)

(b) Substitution of PICS

UIO

CO-OP

...

Figure 2.6:

Substitution of PICS

Until now it was assumed that the PICS of an IUT is given before test generation could
start. If we allow parameterized or open requirements in LR we can also try to perform
parameterized test generation, postponing substitution of PICS for PICS-proforma.
The result will be a parameterized abstract test suite3

ATS(PICS-proforma : SCR-type)

This way of test generation is proposed in ISO9646, thus avoiding redoing test gen-
eration for each different value of the PICS, which is important since the tests are
generated manually. Once algorithms for test generation can be defined, and tools that
support these algorithms are available, it does not matter any more when the PICS is

3‘Parameterized’ means that there is a formal parameter, contrary to the use of ‘parameterized’ in
ISO9646 (for example in ‘parameterized abstract test suite’), where it means that ‘a parameter value
is supplied in accordance with the PICS/PIXIT’. The usual term for this value supply is ‘instantiation’
or ‘application’.



2.2. Formal Interpretation of ISO IS-9646 45

substituted as long as the result is the same, i.e. the diagram in figure 2.6(b) should
commute.

2.2.8 Limitations of Testing

If we succeed in deriving a generic test suite GTS that has a test case for each of the
test purposes in the selected set P ⊆ S, and an abstract test suite ATS that is valid
with respect to GTS, then we may conclude that

I conforms to S iff (∗ by equation (2.1) ∗)
∀r ∈ S : I sat r implies (∗ since P ⊆ S ∗)
∀p ∈ P : I sat p iff (∗ by equation (2.10) ∗)
∀g ∈ GTS : apply(g, I) 6= fail implies (∗ by contraposition of (2.13) ∗)
∀a ∈ ATS : apply(a, I) 6= fail

Therefore by contraposition:

∃ a ∈ ATS : apply(a, I) = fail implies I does not conform to S

The fact that the implication is valid only in one direction (‘if we have a test case
with fail-result then we have a non-conforming implementation’, but not ‘if we have a
non-conforming implementation then we have a test case with fail-result’) reflects the
famous dictum that ‘testing can only show the presence of errors, not their absence’.

2.2.9 PIXIT

The PIXIT contains extra information about the IUT and its testing environment,
needed in the test implementation phase (section 1.3.4). ISO9646 states about the
PIXIT: ‘A statement made by a supplier or implementer of an IUT which contains
or references all of the information (in addition to that given in the PICS) related
to the IUT and its testing environment, which will enable the test laboratory to run
an appropriate test suite against the IUT’ [ISO91a, part 1, section 3.4.8]. We can also
describe the PIXIT as all parameters of the executable test suite that are not parameters
of the specification (since specification parameters constitute the PICS).

Two kinds of parameters can be distinguished:

1. Parameters that describe the relation between abstract concepts in the abstract
test cases and concrete concepts in the implementation and its testing environment.
Examples are the mapping of PCOs to concrete addresses, memory locations, or
file descriptors, and the mapping of ASPs (abstract service primitives) to concrete
data structures.

In a formal context this corresponds to giving the relation between the formal
objects of the specification formalism (signals, gates, abstract data types, . . . ) and
the concrete objects of the implementation. This can be seen as an interpretation
function from formal objects to concrete objects.



46 Chapter 2. A Formal Framework for Conformance Testing

2. Parameters that add precision to very general requirements in the specification for
the purpose of testing. Such requirements can be of the form ‘there must be an
x such that P (x)’. To test P (x) it can be necessary to know which value of x
has been chosen in the implementation, especially if the value domain of x is very
large. Examples are the largest representable integer, the exact value of which can
be important for a particular test case, and the requirement ‘the implementation
shall support N connections, where N shall be at least 3’; in the PIXIT the exact
value for N is given in order to do meaningful testing.

In a formal context this corresponds to the occurrence of nondeterminism in spec-
ifications. Sometimes the nondeterministic specifications leave open too many
choices to do meaningful testing. The PIXIT defines a restriction of nondetermin-
ism, indicating how the nondeterminism was resolved in a particular implementa-
tion.

2.3 Conformance as a Relation

In section 2.2.1, (2.4) and (2.5), it was shown that conformance can be considered as
a relation conforms-to between the class of implementations IMPL and LFDT . In
section 2.2.4 we assumed that the behaviour of the ‘real’ implementation I can be
represented by the formal expression BI ∈ LIMPL:

conforms-to ⊆ LIMPL × LFDT

Since a natural choice for LIMPL is LFDT , conforms-to can be considered as a relation
on LFDT :

conforms-to ⊆ LFDT × LFDT

which according to equation (2.5) is defined by

BI conforms-to BS =def ∀r ∈ LR : BS spec r implies BI sat r (2.14)

This definition depends on the requirement language LR and the relations spec and
sat. Different choices for these allow the definition of different classes of conforming
implementations with the same language LFDT . This is illustrated in the examples in
section 2.4.2.

Once LR, spec, and sat have been chosen the relation is fixed. We can try to find a
characterization of this relation in terms of behaviour expressions only, so that confor-
mance can be studied as a relation between behaviour descriptions, without considering
requirements explicitly. The language LR together with spec and sat only serves as the
basis for defining the conformance relation; in studying conformance we can do without
it. In studying behavioural formalisms this approach of considering conformance as a
relation endowed with certain properties is common.

If conforms-to is a relation on LFDT , spec and sat are both relations between LFDT

and LR. This makes it possible to compare spec and sat, and to choose spec equal



2.3. Conformance as a Relation 47

to sat. The next proposition relates properties of conforms-to to properties of spec,
sat and LR.

Proposition 2.3
Let conforms-to ⊆ LFDT ×LFDT be defined by (2.14):

BI conforms-to BS =def ∀r ∈ LR : BS spec r implies BI sat r

then

1. conforms-to is reflexive if and only if spec ⊆ sat

2. conforms-to is transitive if spec ⊇ sat

3. conforms-to is a preorder if spec = sat

4. conforms-to is an equivalence if spec = sat and negation is expressible in LR,
i.e. if

∀r ∈ LR, ∃ r ∈ LR, ∀B ∈ LFDT : B sat r iff not B sat r

2

The converse of proposition 2.3.2 (and thus of 2.3.3) does not hold as follows from the
counter example:

conforms-to = LFDT × LFDT , spec = ∅, and sat 6= ∅;
then conforms-to is transitive, (2.14) is fulfilled and spec 6⊇ sat.

If the additional requirement is put that every set of requirements that is specified by
a BS, is exactly satisfied by a BI , and vice versa, then the converse does hold:

Proposition 2.4
If ∀BI ∈ LFDT , ∃BS ∈ LFDT : {r ∈ LR | BS spec r} = {r ∈ LR | BI sat r},
and ∀BS ∈ LFDT , ∃BI ∈ LFDT : {r ∈ LR | BI sat r} = {r ∈ LR | BS spec r},
then

conforms-to is transitive if and only if spec ⊇ sat

2

We see that the two approaches in the specification of concurrent systems, viz. the logi-
cal approach in which a specification is a set of formulae in some logic, and conformance
is expressed by satisfaction of these formulae, and the behavioural approach, where spec-
ifications are expressions with an operational, behavioural interpretation, and confor-
mance is based on a comparison between the observable behaviours of the specification
and the implementation, formalized as a relation, are closely related [Lar90].

Whereas (the formal interpretation of) ISO9646 uses the logical approach, current FDTs
are based on the behavioural approach. Conformance as a relation, and more specifically
as a preorder (proposition 2.3.3) on the FDT, is often studied in literature [BAL+90,
Led90]. In [BAL+90] it is referred to as an implementation relation, and denoted by
≤R.



48 Chapter 2. A Formal Framework for Conformance Testing

2.4 Examples

In this section simple examples of vending machines are used to illustrate the ideas
presented in the previous sections. The examples are based on the formalism of labelled
transition systems (section 1.4), using the vending machine specified by the action tree
of figure 2.7.

r
r
r
r
r
r

�
��@

@@

shilling

tea-button

teacoffee

coffee-button

Figure 2.7: Action tree of a vending machine.

First, in section 2.4.1, a specification is given by means of natural language require-
ments, and the ISO9646 abstract test suite generation trajectory (section 1.3.3) is fol-
lowed. In section 2.4.2 the labelled transition system of figure 2.7 is taken as its formal
behaviour specification. This means that we choose LFDT to be LTS. Formal require-
ments are derived using different requirement languages LR. It is shown that different
languages LR allow different classes of conforming implementations of the vending ma-
chine in figure 2.7. Implementations are also represented as labelled transition systems.
This means that LIMPL is chosen to be LTS, and that the test hypothesis is: I ∈ LTS.
Some of the classes of implementations are shown to correspond to relations defined in
section 1.4.3. Variations of spec and sat will lead to even more, different classes of
conforming implementations. Section 2.4.3 gives an example of introducing optional be-
haviour in the vending machine. In section 2.4.4 the logical concept of derivation is used
to reduce the number of requirements specified by figure 2.7. Finally, in section 2.4.5 a
generic and abstract test case are derived.

2.4.1 Natural Language Specification of the Vending Machine

In this subsection we will consider a natural language specification in English of the
vending machine. Natural language conformance requirements are given, and from
these a test purpose, a generic test case, and an abstract test case are derived according
to the ISO9646 methodology.

Specification

Let the natural language specification of the vending machine M be given by the fol-
lowing conformance requirements:



2.4. Examples 49

r1: an implementation of M must be able to accept a shilling ;

r2: after an implementation of M has accepted a shilling there is a choice between
pushing the coffee-button and the tea-button;

r3: after the coffee-button has been pushed the machine shall produce coffee;

r4: after the tea-button has been pushed the machine shall produce tea.

Test Purposes

The first step in generating an abstract test suite from these requirements is the selection
of test purposes (section 1.3.3). An example of a test purpose for requirement r3 is

◦ test whether the machine produces coffee after the coffee-button has been pushed.

Generic Test Cases

For a corresponding generic test case we assume that the IUT is in a state where the
coffee-button can be pushed. Then the test case is

1. push the coffee-button;

2. check whether coffee is produced.

Abstract Test Cases

To obtain an abstract test case we first have to expand the assumption of the generic
test case: bringing the IUT in the desired state. This is the preamble of the abstract
test case. It consists of the action shilling. The resulting abstract test case can be
described in a TTCN-like notation ([ISO91a, part 3], section 1.3.3):

behaviour constraints verdict
!shilling

!coffee-button
?drink drink = coffee pass
?drink drink 6= coffee fail

The first event is shilling, the exclamation mark indicating that the initiative for this
event is with the tester. After the second event (coffee-button) a drink shall be received
by the tester. There are two alternatives. If drink is equal to coffee the test case is
successful: the verdict pass is assigned. Otherwise a failure in the IUT was found: the
verdict is fail.

As a next step, suppose that the machine cannot be accessed directly by a tester, but
that the IUT is embedded in an environment that consists of a butler who operates the
machine. The tester has to give orders to the butler, and receives the drinks from the



50 Chapter 2. A Formal Framework for Conformance Testing

butler. Giving an order consists of giving a shilling, action give-shilling, followed by
the question please by the butler, and the choice between ordering coffee (order-coffee),
and ordering tea (order-tea). After receiving the order, the butler goes to the machine,
puts the shilling in, presses the coffee-button, respectively the tea-button, takes coffee,
respectively tea, and supplies the coffee, coffee-supply, or tea tea-supply. An abstract
test case taking into account this environment of the IUT is the following:

behaviour constraints verdict
!give-shilling

?please
!order-coffee

?drink-supply drink = coffee pass
?drink-supply drink 6= coffee fail

Of course, this only works as a test case for the vending machine if we can assume that
the butler, i.e. the test interface, is doing his job correctly.

2.4.2 Formal Specification of the Vending Machine

Now we come to the formal specification of the vending machine, and the formal deriva-
tion of test cases according to the methodology discussed in section 2.2. It will be
shown that the labelled transition system in figure 2.7 does not uniquely define con-
forming implementations. Different formal languages LR for conformance requirements
define different classes of conforming implementations. Indications about what such
formal languages should look like are obtained by formalizing the natural language
conformance requirements. Ambiguities in these natural language requirements lead to
different formalizations, and thus to different languages LR.

Formalization of Requirements

The first natural language requirement r1 can be formalized, using the notation for
labelled transition systems (table 1.1), as

M
shilling

⇒ (2.15)

However, it is not clear from the natural language specification whether M may accept
anything else, e.g. a penny. If this is not allowed this can be formalized by

M
penny

6⇒ (2.16)

or, more generally, by the set of requirements

{ M
a

6⇒ | a ∈ L, a 6= shilling } (2.17)



2.4. Examples 51

In the second natural language requirement r2 it is not clear whether the machine allows
the environment to choose between pushing the coffee-button and the tea-button, or
whether the machine chooses itself. In the first case the requirement can be formalized
by the following two requirements, which shall both be satisfied:

if M
shilling

⇒M ′ then M ′ coffee-button
⇒ (2.18)

if M
shilling

⇒M ′ then M ′ tea-button
⇒ (2.19)

The second case, where M can choose arbitrarily between allowing the coffee-button or
the tea-button to be pushed, can be formalized by:

if M
shilling

⇒M ′ then M ′ coffee-button
⇒ or M ′ tea-button

⇒

or equivalently by:

if M
shilling

⇒M ′ then ∃a ∈ { coffee-button,tea-button } : M ′ a
⇒ (2.20)

Neither (2.18) nor (2.19) are conformance requirements in this case. Moreover, analo-
gous to (2.16) requirements like the following could be added:

M
shilling ·soup-button

6⇒

Requirement Languages

In the above discussion requirements of the following three forms appear:

σ
⇒ ,

σ

6⇒ , if
σ
⇒ then ∃a ∈ A :

a
⇒

with σ ∈ L∗, A ⊆ L. These three kinds of requirements inspire to the definition of three
requirement languages: Ltr , Ltr , and Lmust . The names will be clarified at the end of
this section.

Definition 2.5
The requirement languages Ltr , Ltr , and Lmust are defined as:

◦ Ltr =def { cannot σ | σ ∈ L∗}

◦ Ltr =def { can σ | σ ∈ L∗}

◦ Lmust =def { after σ must A | σ ∈ L∗, A ⊆ L}

For spec and sat we take the same relation, indicated by |= and defined as:

◦ B |= cannot σ =def B
σ

6⇒

◦ B |= can σ =def B
σ
⇒

◦ B |= after σ must A =def ∀B′( if B
σ
⇒B′ then ∃a ∈ A : B′ a

⇒ )
2



52 Chapter 2. A Formal Framework for Conformance Testing

Formal Specification and Conformance Requirements

Consider the action tree in figure 2.7 as a behaviour specification BM ∈ LTS, and let
the label alphabet be given by

L = { shilling, penny, coffee-button, tea-button, soup-button, coffee, tea, soup }

According to equation (2.2) the set of conformance requirements is given by

S = {r ∈ LR | BM spec r}

For Ltr this means that the following finite set of conformance requirements is obtained:

Str = {r ∈ Ltr | BM |= r}
= { can ǫ , can shilling , can shilling·coffee-button , can shilling·tea-button ,

can shilling·coffee-button·coffee , can shilling·tea-button·tea }

Str specifies that any trace in the specification must be present in the implementation.
It specifies the minimal required behaviour of an implementation. An implementation
should at least do what is specified, but it is free to do more. In figure 2.8, I1, I2, I3,
and I4 are conforming implementations of Str.

Another class of conforming implementations is defined if Ltr is chosen as LR. An
infinite number of conformance requirements is obtained from BM :

Str = {r ∈ Ltr | BM |= r}
= { cannot penny , cannot coffee , . . . ,

cannot shilling·shilling , cannot shilling·soup-button ,
cannot shilling·coffee , . . . ,
cannot shilling·coffee-button·tea , . . . }

= { cannot σ | σ 6∈ traces(BM) }

Str specifies that any trace which is not in the specification, shall not be in the im-
plementation. It specifies the maximal behaviour of an implementation: a conforming
implementation may not do more than is allowed in the specification, but doing less is
allowed, even doing nothing. In figure 2.8, I1, I4, I5, I6, I7, I8, and I9 are conforming
implementations.

The language Lmust takes into account the branching behaviour of a system. It distin-
guishes between I1 and I4 (figure 2.8).

Smust = { after ǫ must {shilling} , after ǫ must {shilling, coffee} , . . . ,
after shilling must {coffee-button} ,
after shilling must {tea-button} ,
after shilling must {coffee-button, tea-button} , . . . ,
after penny must ∅ , . . . ,
after shilling·soup must ∅ , . . . }



2.4. Examples 53

r
r
r
r
r
r

�
��@

@@

I1

shilling

tea-button

tea

coffee-button

coffee

r
r
r
r
r
r

r�
��@

@@

�
��@

@@

I2

tea

penny

coffee-button

shilling

coffee

tea-button

r
r
r
r
r
r
r

�
��@

@@

I4

shilling

tea-button

tea

coffee-button

shilling

coffee

r
r
r
r

shilling

coffee-button

coffee

I5

r
r
r
r
r
r

r
r
r

�
��@

@@

�
��@

@@

I3

penny

tea-button

soup tea

coffee-button

shilling

coffee

soup-
button

r
r
rr

r
@

@@

�
��

shilling

tea-buttoncoffee-button

I7

coffee

r
r
r
r
I6

shilling

tea-button

tea

r
r

r
shilling

I8 I9

Figure 2.8: Potential implementations.



54 Chapter 2. A Formal Framework for Conformance Testing

I1 is conforming according to Lmust . It satisfies the requirements

after shilling must {coffee-button}
and after shilling must {tea-button}

which hold for the specification. I4 does not satisfy these requirements, only the re-
quirement

after shilling must {coffee-button,tea-button}

It is clear that different choices for the language of requirements LR lead to differ-
ent classes of conforming implementations. A behaviour specification in itself is not
sufficient to define what conforming implementations are. A behaviour specification
together with a choice for LR, spec and sat defines a class of conforming implemen-
tations. This choice for LR corresponds to a choice for an implementation relation,
as explained in section 2.3. The requirement languages Ltr and Ltr in this example
correspond to the preorders of definition 1.15. According to equation (2.14) Ltr defines
the implementation relation ≤tr , and Ltr defines ≥tr . The implementation relation
corresponding to the language Lmust will be elaborated in chapter 3. It will be shown
to correspond to the relation testing preorder ≤te, or red in [Bri88].

Proposition 2.6
Let conforms-to ⊆ LTS × LTS be defined by (2.14):

BI conforms-to BS =def ∀r ∈ LR : BS spec r implies BI sat r

and let Ltr , Ltr , spec, and sat be given in definition 2.5, then

◦ For LR = Ltr : conforms-to = ≤tr

◦ For LR = Ltr : conforms-to = ≥tr
2

By varying the relations spec and sat even more implementation relations can be
obtained. Take as an example the language Lmust with sat as in definition 2.5 and with
spec defined by

B spec after σ must A =def B sat after σ must A and σ ∈ traces(B)

This is an example where spec ⊆ sat, but not spec 6= sat (section 2.3, proposition 2.3).
The implementation relation defined in this way is indeed reflexive, B conforms-to B
for any B, but it is not transitive: if B1 conforms-to B2 and B2 conforms-to B3

then not necessarily B1 conforms-to B3. The reader is invited to check in figures 2.8
and 1.7 (section 1.4), that

I7 conforms-to I5

and I5 conforms-to figure 1.7
but not I7 conforms-to figure 1.7

In chapter 3 this implementation relation will be elaborated, and it will be shown to
correspond to the relation conf of [Bri88] (proposition 3.17).



2.4. Examples 55

Many other choices for languages LR are possible. Examples are combinations of Ltr , Ltr

and Lmust , such as Ltr ∪ Ltr . Since (not can σ) = cannot σ , negation is expressible in
Ltr∪Ltr , and therefore according to proposition 2.3.4 the corresponding implementation
relation is an equivalence. It is trace equivalence ≈tr (definition 1.13.4).

An area of interest is the relation between different requirement languages, and hence
between different implementation relations. As an example consider the relation be-
tween Ltr and Lmust . It follows from definition 2.5 that for any B

B |= cannot σ if and only if B |= after σ must ∅

Thus any requirement in Ltr can be expressed in Lmust (but not vice versa). It follows
that any implementation which is correct according to Lmust is also correct according
to Ltr , thus

if I ≤te B then I ≤tr B

Which requirement language is useful in a particular case depends on the application.
An example is the difference between the specification of a protocol and a local in-
terface. In a protocol specification it is desirable to specify some safety requirements,
e.g. a protocol implementation should not send strange messages. In a local interface
requirements might only specify minimum behaviour, with freedom to do more, as long
as it is local.

From the literature many implementation relations are known. A whole range of them
can be defined, each with its own application area, and with relations between them,
see e.g. [Lan90, Gla90].

A well-known logical language for labelled transition systems is Hennessy-Milner Logic
HML [HM85]. The corresponding equivalence is bisimulation equivalence [Par81] de-
fined in 1.13. Sublanguages of HML can be used to specify weaker equivalences e.g. the
equivalences used in this section [Lar90]. Related logics with corresponding equivalences
are given in [Abr87, Phi87, Sti91].

2.4.3 PICS as a Specification Parameter

Suppose the following modification of the specification of the vending machine M : M
must supply coffee, but supplying tea is optional. According to section 1.3.2 it is stated
in the PICS whether a particular implementation does implement the tea-option. The
PICS proforma could look like

Has the tea-option been implemented? : yes/no.

Formally, this can be conveniently specified by using a PICS parameter (section 2.2.2).
Figure 2.9 shows a way to represent such a parameterized specification

BM(PICS-proforma : {yes,no})



56 Chapter 2. A Formal Framework for Conformance Testing

The transition tea-button depends on the condition [PICS-proforma = yes]. Only if the
condition is fulfilled this transition can take place. The two possible instantiations of
this parameterized specification are also given in figure 2.9. Depending on the value of
the PICS of a particular IUT either the first, or the second instantiated specification is
used as a basis for obtaining the conformance requirements.

r
r
r
r

shilling

coffee-button

coffee

BM (no) :=

r
r
r
r
r
r

�
��@

@@

shilling

tea-button

tea

BM (yes) :=

coffee-button

coffee

r
r
r
r
r
r

�
��@

@@

shilling

tea

→ tea-button

BM (PICS-proforma : {yes,no}) :=

coffee-button [PICS-proforma=yes]

coffee

Figure 2.9: Parameterized specification with instantiations.

Another way of specifying optional behaviour is by using a nondeterministic specifica-
tion. This is shown in figure 2.10. Upon receiving a shilling M may choose nondeter-
ministically between making a transition to state s1 or to state s2. After shilling, M
always offers the action coffee-button, but the action tea-button is only offered in s1.
This means that tea-button may be refused after shilling.

Specified in Lmust we have the requirements:

after ǫ must {shilling} ,
after shilling must {coffee-button} ,
after shilling must {coffee-button, tea-button} , . . .

but not:
after shilling must {tea-button}

A conforming implementation according to Lmust must also always offer coffee-button
after shilling, and is allowed to refuse tea-button. In figure 2.8, both I1 and I5, i.e.
BM(yes) and BM(no), always offer coffee-button after shilling ; they are conforming
implementations. I4 and I6 are not conforming: they can refuse coffee-button after
shilling.

Note the difference between these two ways of specifying optional behaviour in case of
recursive behaviour. We have recursive behaviour if the machine returns to its initial
state after having supplied coffee or tea, so that it can produce a next drink. In a useful
machine, of course, this is a desirable feature. In case of such recursive behaviour the
nondeterministic specification allows the implementation to renew its choice each time
a shilling is supplied. Using the parameterized specification the implementation must
choose once and for all, before it starts, whether it will supply tea or not.



2.4. Examples 57

r
r
r
r
r

r
r
rr
r

�
��@

@@

�
�

��Q
Q

QQ

tea

s2

shilling

coffee-button

coffee

tea-buttoncoffee-button

shilling

coffee

s1

Figure 2.10: Specifying options by nondeterminism.

2.4.4 Application of Logic

In section 2.2.1 it was pointed out that a requirement language can be considered as
a logical language, and that specifications, sets of requirements, can be considered as
theories. Concepts from logic can be defined for requirement languages. As an example
a few logical concepts are defined for the language Ltr . The presentation is intended
for illustration, not for practical use. We start with defining derivation for Ltr .

Derivation for a logical language is introduced by defining axioms and inference rules.
An axiom is a formula that is assumed to hold. An inference rule defines how a formula
can be obtained from other formulae. Let q1, q2, . . . , qn ⊢ q be an inference rule, then,
if we can prove q1, q2, . . . , qn (the premisses), then we may conclude q (the conclusion).

A derivation for a formula r from a given set of formulae S is a finite sequence
r1, r2, . . . , rn of formulae such that

◦ the last element rn of the sequence is equal to r; and

◦ for each ri in the sequence: either ri is an axiom, or ri ∈ S, or there is an inference
rule rj1, rj2, . . . , rjm

⊢ ri, such that rj1 , rj2, . . . , rjm
are elements of the sequence

preceding ri (j1, j2, . . . jm < i).

If there is derivation for r from S this is written S ⊢ r.

For the requirement language Ltr an axiom is

⊢ can ǫ (2.21)

It expresses the intuition that any system can always do nothing.

An inference rule is, for σ1, σ2 ∈ L∗:

can σ1 ·σ2 ⊢ can σ1 (2.22)

which expresses the intuition that any system that can perform a trace, can also perform
a prefix of that trace.

Using this axiom and this inference rule derivation is simplified due to the fact that a
prefix of a prefix of a trace is also a prefix of the original trace, so that any derivation



58 Chapter 2. A Formal Framework for Conformance Testing

can always be made in one step. Hence, a requirement r = can σ ∈ Ltr can be derived
from a specification S ⊆ Ltr , S ⊢ can σ , if and only if

can σ ∈ S; or (2.23)

can σ is an axiom : σ = ǫ; or (2.24)

can σ is a consequence of (2.22) : ∃σ′ such that can σ ·σ′ ∈ S. (2.25)

Derivation is only interesting if it is sound with respect to a satisfaction relation |=,
which means that if r can be derived from S then every model of S is also model of r:

if S ⊢ r then ∀I ( I |= S implies I |= r ) (2.26)

Derivation is complete if the converse holds.

Soundness means that only true formulae can be derived. Completeness means that
there are sufficient axioms and inference rules to derive all true formulae. For (2.23),
(2.24), and (2.25) we have the following:

Proposition 2.7
Derivation for Ltr as defined by (2.23), (2.24), and (2.25) is sound and complete.

2

Derivation is useful in testing, since it can reduce the number of relevant conformance
requirements. Requirements that can be derived from other requirements are superflu-
ous. A theory that cannot be further reduced without affecting its meaning, is called
logically independent :

S ⊆ LR is logically independent =def not ∃r ∈ S : S\{r} ⊢ r (2.27)

In a sound and complete derivation system this means that none of the requirements
can be removed without changing the class of conforming implementations:

S is logically independent iff ∀r ∈ S, ∃I ∈ LFDT : I 6|= S and I |= S\{r} (2.28)

For Str we have that can ǫ is an axiom, and thus it holds for any implementation.
Testing for such a requirement does not make sense. Moreover,

can shilling·coffee-button·coffee ⊢ can shilling·coffee-button ⊢ can shilling

and analogously for the tea-branch. This implies that Str can be reduced to S ′
tr

with

S ′
tr = { can shilling·coffee-button·coffee , can shilling·tea-button·tea }

S ′
tr

is logically independent. It cannot be further reduced. Note that for Ltr not always
such a reduced, independent specification can be found. An example is a system that
can do a infinitely many often: B = a; B. Non-existence of an independent specification
is a result of the fact that 〈L∗,�〉 is not co-well-founded (cf. appendix A): because we



2.4. Examples 59

can make infinite sequences of preceding traces ‘to the right’, we can make infinite
derivations ‘to the left’, using (2.22).

If a theory S is extended with all requirements that can be derived from it using ⊢, we
get the deductive closure, denoted by S. For our example Str is the deductive closure
of S ′

tr
.

S = {r ∈ LR | S ⊢ r} (2.29)

Due to the soundness (2.26) of the axiom and inference rule S ′
tr

allows exactly the same

implementations as Str = S ′
tr
.

Another concept is consistency of a specification. A specification S is consistent if no
contradiction can be derived from it. If derivation is sound and complete this means that
there is at least one implementation that satisfies all requirements in S. By construction
of Ltr any specification in it is consistent: the implementation that can always perform
every action in L satisfies any S ⊆ Ltr . On the other hand a specification in Ltr can
be inconsistent, e.g. there is no implementation that satisfies S = { cannot ǫ }.

A specification S is syntactically complete if each requirement or its negation can be
derived from it. For sound and complete derivation this implies that there exists at most
one implementation that satisfies S. Logical completeness of specifications is mostly
not required; specifications leave some freedom for the implementer. This was already
illustrated by the specifications Str and Str in the example.

2.4.5 Test Generation

Test Purposes

The first step in deriving abstract test cases is the identification of test purposes. For-
mally, this means a selection of conformance requirements (section 2.2.3). Str contains
6 requirements, which can be reduced to the two requirements of S ′

tr
. This means that

exhaustive testing in the generic sense is possible.

Generic Test Cases

Take the test notation LT to be LTS, then a generic test case corresponding to the test
purpose can shilling·coffee-button·coffee is the labelled transition system that can only
execute the trace shilling·coffee-button·coffee (figure 2.11(a)).

More generally, if can σ ∈ Ltr is a test purpose, then gσ, the action tree consisting
of the sequence of actions σ, is valid with respect to can σ . Application of test case
gσ to implementation I consists of repeatedly running gσ and I in parallel, interacting
synchronously with each other.

This can be elaborated formally in the notation of section 2.2.4 as follows.



60 Chapter 2. A Formal Framework for Conformance Testing

r
r
r
r

shilling

coffee-button

coffee

r
r
r
r
r
r r
r
r
r
r

r
r r

r
r
r
r

�
��

@
@@

give-shilling

please

order-tea

tea-button

tea

tea-supply

shilling

coffee

coffee-supply

coffee-button

shilling

order-coffee

(b) The butler.(a) Generic test case. (c) Abstract test case.

give-shilling

please

order-coffee

coffee-supply

Figure 2.11:

Define gσ ∈ LTS by (definitions 1.6 and 1.7):

{

gǫ =def stop
ga·σ =def a; gσ

The observations that we can make by testing an implementation I with a generic test
case g are the traces that both can perform running synchronously in parallel. Thus
Ω = L∗ and run ⊆ LTS × LTS × L∗ is

run(g, I, σ) =def g ‖I
σ
⇒

and thus runs : LTS × LTS → P(L) is

runs(g, I) = { σ ∈ L∗ | g ‖I
σ
⇒} (2.30)

The application of a test gσ to an implementation I is successful if the trace σ can be
observed at least once. The function eval : P(L) → {pass, fail} is defined by

eval(runs(gσ, I)) =def

{

pass if σ ∈ runs(gσ, I)
fail if σ 6∈ runs(gσ, I)

(2.31)



2.5. Summary of the Testing Framework 61

Now we can prove the validity according to equation (2.10). For each I ∈ LTS we have:

apply(gσ, I) = pass iff (∗ equation (2.12) ∗)
eval(runs(gσ, I)) = pass iff (∗ equation (2.31) ∗)
σ ∈ runs(gσ, I) iff (∗ equation (2.30) ∗)

gσ ‖I
σ
⇒ iff (∗ definition 1.7 ∗)

gσ

σ
⇒ and I

σ
⇒ iff (∗ by construction of gσ, gσ

σ
⇒ always holds ∗)

I
σ
⇒ iff (∗ definition 2.5 ∗)

I sat can σ

This concludes the proof that for each σ, gσ is a valid generic test case with respect to
the test purpose can σ .

Abstract Test Cases

We return to the situation that the vending machine cannot be accessed directly by
a tester, but that it is embedded in an environment that consists of a butler who
operates the machine. The butler forms the test interface of section 2.2.6. In order to
generate abstract test cases formally, we must have a formal description of the butler.
Figure 2.11(b) gives such a description. The implementation access points (IAPs) are
shilling, coffee-button, coffee, tea-button, tea. Via IAPs communication between the test
interface (the butler) and the IUT takes place. The points of control and observation
(PCOs) are give-shilling, please, order-coffee, order-tea, coffee-supply, tea-supply. Via
PCOs the tester communicates with the test interface, and in this way indirectly with
the IUT. There is no physical distribution of testing functions in this example, and all
IAPs are indirectly accessible. It can easily be checked that the abstract test case of
figure 2.11(c) corresponds to the generic test case of figure 2.11(a).

2.5 Summary of the Testing Framework

The use of formal methods in conformance testing has been approached by giving a
formal interpretation of concepts in the informal standard ISO9646. It was not the
intention to present new theories, but to relate existing approaches in the practice
of conformance testing to existing theories in the realm of processes and concurrency,
resulting in a framework for formal conformance testing. Since not all presented formal-
izations will be used in the next chapters, this section summarizes the most important
concepts that will be used. Moreover, some additional notation is introduced.

We distinguished between two approaches of specifying distributed systems, viz. the
logical approach and the behavioural approach. A logical specification consists of a
set of formulae, or requirements, and conformance is expressed by satisfaction of these
requirements. A behaviour specification defines the observable behaviour of a system,
and conformance is expressed by a relation.



62 Chapter 2. A Formal Framework for Conformance Testing

In the next chapters the starting point for studying conformance will be a behavioural
specification technique LFDT . More specifically it will be LTS in most cases. We
assume that implementations can be modelled by the same specification formalism:
LIMPL = LFDT , so that conformance is expressed by a (preorder) relation on LFDT . We
refer to this relation as the implementation relation (section 2.3), and denote it by ≤R.

Testing assumes the existence of a universe of test cases. This is modelled by a test
notation LT . Application of a test case t ∈ LT to an implementation I ∈ LFDT is
modelled by the function apply : LT ×LFDT → {pass, fail, inconclusive}.

It is possible to identify the verdicts pass and inconclusive. This allows to abstract
from the function apply, and to replace it by a relation passes ⊆ LFDT ×LT :

I passes t =def apply(t, I) 6= fail

This simplification is justified by section 2.2.8: we can only demonstrate the presence
of errors, not their absence. The distinction between pass and inconclusive makes
only sense when a test case is related to an individual test purpose, not for correctness
of implementations with respect to specifications.

The relation passes is straightforwardly extended to test suites, i.e. sets of test cases
Π ⊆ LT . We introduce the notation fails as its negation.

Notation 2.8
Let I ∈ LFDT , Π ∈ P(LT ), t ∈ LT :

1. I passes Π =def ∀t ∈ Π : I passes t

2. I fails t =def I /passes t

3. I fails Π =def I /passes Π
2

Test derivation consists of systematically deriving a test suite from S ∈ LFDT , with
the intent of testing implementations for correctness with respect to an implementation
relation ≤R. It can be expressed as a function ΠR : LFDT → P(LT ).

If a test suite is derived according to the methodology of section 2.2, it has the property
that only incorrect implementation are rejected. Such test suites are called sound. If a
test suite rejects all incorrect implementations, and possibly more, it is called exhaustive.
A test suite that rejects all and only incorrect implementations is called complete.

Definition 2.9
Let LFDT be a behavioural specification formalism, ≤R ⊆ LFDT ×LFDT an implementa-
tion relation, LT a test notation, and passes ⊆ LFDT × LT , then

1. A test derivation is a function ΠR : LFDT → P(LT ).

2. Let Π ∈ P(LT ) be a test suite for S with respect to ≤R, then

◦ Π is sound =def ∀I ∈ LFDT : I ≤R S implies I passes Π

◦ Π is exhaustive =def ∀I ∈ LFDT : I 6≤R S implies I fails Π



2.5. Summary of the Testing Framework 63

◦ Π is complete =def Π is both exhaustive and sound.

3. A test derivation ΠR is sound, exhaustive, or complete, if for all S, ΠR(S) is sound,
exhaustive, or complete respectively.

2

If the logical approach is used, a specification consists of a set of requirements, which
corresponds to a logical theory. Given a logical specification S ⊆ LR, and the class of
models LFDT , conformance is expressed using a satisfaction relation sat ⊆ LFDT ×LR

(equation (2.1)):
I sat S =def ∀r ∈ S : I sat r

Apart from the specification, also an implementation can be related to a theory: the
theory of all requirements that it satisfies, denoted by sats(I):

sats(I) =def { r ∈ LR | I sat r }

In this setting conformance is expressed by requiring that the theory S is a subtheory
of sats(I):

S ⊆ sats(I)

The relation between behaviour specifications and logical specifications is expressed by
a relation spec ⊆ LFDT ×LR. Using spec the theory specified by BS ∈ LFDT , denoted
by specs(BS), is defined by (equation (2.2)):

specs(BS) =def { r ∈ LR | BS spec r }

Now we can state that a behavioural approach of defining conformance is compatible
with a logical approach, if implementations conforming according to ≤R, also logically
conform to the theory specs(BS). This is just another way of expressing equation (2.14).

Definition 2.10
An implementation relation ≤R ⊆ LFDT × LFDT is compatible with a requirement lan-
guage LR, with relations sat, spec ⊆ LFDT × LR, if for all BS, I ∈ LFDT :

I ≤R BS iff I sat specs(BS)

2

Finally, we can identify the theory of a test suite Π as those requirements that are
tested by Π, i.e. the requirements that are satisfied by all and only implementations
that pass Π. These requirements are denoted by testreqs(Π):

∀I ∈ LFDT : I passes Π iff I sat testreqs(Π) (2.32)

In this setting a sufficient condition for completeness of a test suite Π is that the
requirements tested by Π are exactly those contained in S:

S = testreqs(Π) (2.33)

Now that we have a framework for conformance testing the next step is to fill it in with
specific implementation relations, test derivation techniques, etc. This is done in the
following chapters.



64 Chapter 2. A Formal Framework for Conformance Testing



Chapter 3

Implementation Relations

3.1 Introduction

Conformance can be expressed by means of an implementation relation (sections 2.3
and 2.5). Given a specification formalism LFDT and assuming that implementations
can be modelled by elements of LFDT an implementation relation ≤R ⊆ LFDT × LFDT

expresses the correctness of implementations with respect to specifications: I ≤R S if
and only if I is a correct implementation of the behaviour specification S. A natural
question now is which relations are appropriate to be implementation relations. A
related question is what logical languages are suitable to describe requirements, and
how these requirements are specified and satisfied.

This chapter approaches this question by reversing the test case generation problem.
Instead of deriving a test case t ∈ LT for a conformance requirement, such that from
the observations of testing an implementation I with t satisfaction of the requirement
can be concluded, we study the properties that can be tested when a class of test cases
is given. Such testable properties give a natural way of defining a notion of equivalence
for specifications and implementations: two systems are equivalent if they satisfy the
same testable properties. This principle of defining an equivalence can be applied to
various specification formalisms. By varying the class of test cases different equivalences
are obtained.

The main attention of this chapter is on such equivalences and related implemen-
tation relations for labelled transition systems. Such relations were introduced in
[DNH84, DN87], and called testing equivalences. The result of this chapter is an instan-
tiation of the formal testing framework of chapter 2 (section 2.5) with the specification
formalism of labelled transition systems LTS and implementation relations, correspond-
ing requirement languages, test notation languages, and test application functions. A
basic assumption in this chapter is that the test case and the implementation commu-
nicate directly, without a test interface or test context, hence this chapter is restricted
to generic testing (section 2.2.5).

65



66 Chapter 3. Implementation Relations

The next section starts with a discussion of testing equivalence in general, followed by
testing equivalence for labelled transition systems. A logical language for requirements
that characterizes this equivalence is introduced. In section 3.3 implementation relations
for labelled transition systems are defined. One of these relations, the implementation
relation conf, is elaborated in section 3.4.

3.2 Testing Equivalence

In section 2.2.4 the problem of test case generation was described as finding a test
case ti ∈ LT for each test purpose pi such that from the observations of testing I
with ti satisfaction of pi can be concluded. In search for a suitable equivalence and
implementation relations, or, equivalently, a suitable requirement language LR, this
statement is reversed: given a class of test cases which requirements or properties can
be tested?

Let LT be the class of test cases that can be executed, then a conformance requirement
or test purpose does not make sense if it cannot be tested by a test t ∈ LT , i.e. if there is
no test in LT such that from the observations made during testing we can conclude about
satisfaction of that property. For such an untestable property we cannot distinguish
between two systems one of which satisfies the property and the other does not, so an
implementation cannot be rejected as non-conforming based on such a property. Two
systems that do not differ in any testable property cannot be distinguished at all, so
they are equivalent.

Let the observations made by testing an implementation I ∈ LFDT with a test t ∈ LT be
given by runs(t, I) (section 2.2.4), then the systems I1 and I2 are testing equivalent with
respect to LT , I1 ≈T I2, if for all possible tests that can be performed, the observations
made of I1 and I2 are the same:

I1 ≈T I2 =def ∀t ∈ LT : runs(t, I1) = runs(t, I2) (3.1)

The class LT of test cases defines testing equivalence on LFDT in a natural way. Dif-
ferent classes of tests define different equivalences. The more powerful the tests in LT

are, the more discriminating properties can be observed, hence more systems can be
distinguished, and a finer equivalence is obtained.

A specific choice for the class of test cases LT can be made if we consider the kind
of systems that we are testing. These systems are usually components of distributed
systems, e.g. protocol entities. A specification describes the external behaviour of such
a system, i.e. how a system is observed by its environment. The internal functioning
does not matter; the system is considered as a black box. A consequence is that the
environment determines which properties are important to be observed.

For components of distributed systems the natural environment consists of other com-
ponents. These components are systems of the same kind, and can be modelled by



3.2. Testing Equivalence 67

the same formalism. For example the environment of an (N)-protocol entity consists
of the (N-1)- and the (N+1)-protocol entities, which can all be described by the same
behavioural specification formalism. This means that if our systems are modelled by
LFDT , also the environment is modelled by LFDT , and hence the behaviour of test cases
should be described in LFDT .

Choosing LT = LFDT in (3.1) we obtain the definition of testing equivalence on LFDT :

I1 ≈FDT I2 =def ∀t ∈ LFDT : runs(t, I1) = runs(t, I2) (3.2)

Testing Equivalence for Labelled Transition Systems

Applying the principle of testing equivalence (3.2) to the specification formalism of
labelled transition systems (section 1.4) we have for I1, I2 ∈ LTS:

I1 ≈LTS I2 =def ∀t ∈ LTS : runs(t, I1) = runs(t, I2) (3.3)

This leaves open what a test run is, and what kind of observations can be extracted by
testing a labelled transition system I with a labelled transition system t.

During a test run t and I communicate. We model this communication by the syn-
chronous interaction of t and I: I can perform an observable action a ∈ L if and only
if t performs the same action a. In labelled transition systems this is formalized by the
synchronization operator ‖: LTS × LTS → LTS (definitions 1.6 and 1.7):

t ‖ I

Other kinds of interaction are possible, e.g. asynchronous communication via queues or
via buffers. This kind of communication can be modelled by introducing a test interface
(section 2.2.6). It is elaborated for labelled transition systems in chapter 5, where it
is shown that the kind of interaction that is assumed between t and I influences the
resulting testing equivalence.

If test execution is modelled by t ‖ I the observations that can be considered are the
occurrence and the non-occurrence of (sequences of) observable actions:

t‖I
σ
⇒ and if t‖I

σ
⇒B then B

a

6⇒ for all a ∈ L

These notions of observation are formalized by two sets of traces, one set with traces
after which no action can be observed (deadlocks), and one set with traces that can be
observed. Thus the definition of testing equivalence for labelled transition systems ≈te

is obtained, instantiating (3.3) with Obs(t, I) and Obs ′(t, I) for runs(t, I).

Definition 3.1

1. I after σ deadlocks =def ∃I ′ ∈ I after σ : ∀a ∈ L : I ′
a

6⇒

2. The observation functions Obs,Obs ′ : LTS × LTS → P(L∗) are defined by



68 Chapter 3. Implementation Relations

◦ Obs(t, I) =def {σ ∈ L∗ | t‖I after σ deadlocks }

◦ Obs ′(t, I) =def {σ ∈ L∗ | t‖I
σ
⇒}

3. Testing equivalence on labelled transition systems ≈te ⊆ LTS ×LTS is defined by

I1 ≈te I2 =def ∀t ∈ LTS : Obs(t, I1) = Obs(t, I2) and Obs ′(t, I1) = Obs ′(t, I2)

2

This extensional definition of ≈te , i.e. this definition in terms of observations by an
environment (test cases), can be simplified (proposition 3.3), and rewritten to an in-
tensional characterization, i.e. a characterization in terms of properties of the labelled
transition systems I1 and I2 themselves (theorem 3.6).

The first simplification is that the observations Obs ′(t, I) are superfluous (proposi-
tion 3.3.1). The second simplification requires the definition of a subclass of test cases
LTM , the must tests. This subclass appears to be sufficient to characterize ≈te .

Definition 3.2
Let σ ∈ L∗, A ⊆ L, then the must test t[σ,A] is defined inductively by

{

t[ǫ,A] =def

∑
{a; stop | a ∈ A}

t[b·σ,A] =def b; t[σ,A]

LTM ⊆ LTS is the class of must tests: LTM =def {t[σ,A] | σ ∈ L∗, A ⊆ L}
2

r
r

r

r
r

r r r

.

.

.

.

.

.

.

.

.

.

�
�

��

�
��

Q
Q

QQ
an

Must test t[σ,A]

with σ = b1 ·b2 ·. . .·bm

and A = {a1, a2, . . . , an}

b1

b2

bm

a1 a2

Figure 3.1: A must test.

Proposition 3.3

1. I1 ≈te I2 iff ∀t ∈ LTS : Obs(t, I1) = Obs(t, I2)

2. I1 ≈te I2 iff ∀t ∈ LTM : Obs(t, I1) = Obs(t, I2)
2



3.2. Testing Equivalence 69

A must test t[σ,A] deadlocks with an implementation I either during execution of σ, or if
the trace σ is executed and I cannot perform any of the actions in A, or if the must test
reaches a terminal state after having executed σ and an a ∈ A (figure 3.1). Consider the
second possibility that can cause deadlock: it points out that I may refuse to perform
any of the actions in A after having performed σ. This inspires to define the requirement
language Lref reflecting this property. A property of the form after σ refuses A
expresses that it is possible (but not necessary) for I to deadlock for all actions in A after
it has executed the trace σ. The negation of the property after σ refuses A turns
out to be exactly a property in Lmust , which was already introduced in the examples
of section 2.4. A property in Lmust of the form I after A must σ expresses that I
after having executed the sequence of actions σ is always able to execute at least one
of the actions in the set A. A must test t[σ,A] exactly tests whether after σ must A
is satisfied: proposition 3.5.6.

Definition 3.4
The requirement languages Lref and Lmust are defined as:

◦ Lref =def { after σ refuses A | σ ∈ L∗, A ⊆ L}

◦ Lmust =def { after σ must A | σ ∈ L∗, A ⊆ L}

Satisfaction of requirements is defined by:

◦ I sat after σ refuses A =def ∃I ′ ∈ I after σ : ∀a ∈ A : I ′
a

6⇒

◦ I sat after σ must A =def ∀I ′ ∈ I after σ : ∃a ∈ A : I ′ a
⇒

For short we write I after σ refuses A and I after σ must A , respectively.
2

Proposition 3.5

1. I after σ refuses A iff not ( I after σ must A )

2. if I after σ refuses A1 and A1 ⊇ A2 then I after σ refuses A2

3. if I after σ must A1 and A1 ⊆ A2 then I after σ must A2

4. I after σ deadlocks iff I after σ refuses L

5. I after σ refuses ∅ iff σ ∈ traces(I)

6. I after σ refuses A iff σ ∈ Obs(t[σ,A], I)
2

Now it follows that ≈te is fully characterized by properties of the form after σ must A
or of the form after σ refuses A. This gives the intensional characterization of ≈te .

Theorem 3.6

I1 ≈te I2 iff ∀σ ∈ L∗, ∀A ⊆ L : I1 after σ must A iff I2 after σ must A

2



70 Chapter 3. Implementation Relations

Testing equivalence ≈te is the finest equivalence on LTS for which differences between
non-equivalent processes can be observed with our notion of observation, i.e. testers
in LTS, using synchronous communication, and observing traces (Obs ′) and deadlocks
(Obs). That traces can be observed is clear: they consist of actions that are observable
by definition. Observation of deadlock requires some argumentation. Deadlock, i.e.
the non-occurrence of actions, is not observable, only the occurrence of actions can be
observed. If no action occurs it might be caused by a long delay: transition systems
do not impose a maximum delay on the occurrence of actions, so there can never be
certainty that actions are really refused. This dilemma can be resolved by assuming
that in practice very long delays are unacceptable, and can be identified with deadlock.

Testing equivalence ≈te will be our basic notion of equality of processes, which in fact
means that we do not model systems by labelled transitions systems, but by equivalence
classes of LTS/≈te .

We end this section with a comparison of testing equivalence with the equivalences
defined in section 1.4, extending proposition 1.14.2.

Proposition 3.7
≡ ⊂ ∼ ⊂ ≈ ⊂ ≈te ⊂ ≈tr

2

3.3 Implementation Relations

An implementation relation formalizes the notion of correctness of an implementation
I with respect to a specification S. Analogous to testing equivalence, implementation
relations can be obtained by comparing observations made of I with observations made
of S. Unlike testing equivalence equality of observations is not required. For an imple-
mentation relation it is sufficient that observations of the implementation can be related
to observations of the specification, in the sense that the behaviour of the implementa-
tion can be ‘explained’ from the behaviour of the specification. An implementation is
considered correct if all observations made of the implementation by any environment
can be explained from the behaviour of the specification.

To define implementation relations for labelled transition systems this principle is ap-
plied to the observations Obs and Obs ′ introduced in the previous section: traces ob-
served by testing an implementation I with a test case t should also be observed by
testing S with t; and deadlocks observed by testing I with t should also be observed by
testing S with t. The resulting implementation relation turns out to be the well-known
relation testing preorder, or failure preorder ≤te (reduction red in [BSS87]).

Definition 3.8
Let I, S ∈ LTS, then

I ≤te S =def ∀t ∈ LTS : Obs(t, I) ⊆ Obs(t, S) and Obs ′(t, I) ⊆ Obs ′(t, S)
2



3.3. Implementation Relations 71

Completely analogous to testing equivalence, this extensional definition can be rewrit-
ten to an intensional characterization: the observations in Obs ′(t, I) are superfluous,
must tests can be used to give a complete characterization, and finally ≤te can be
characterized using properties of the forms after σ refuses A or after σ must A .

Theorem 3.9

I ≤te S iff ∀t ∈ LTS : Obs(t, I) ⊆ Obs(t, S)
iff ∀t ∈ LTM : Obs(t, I) ⊆ Obs(t, S)
iff ∀σ ∈ L∗, ∀A ⊆ L :

I after σ refuses A implies S after σ refuses A
iff ∀σ ∈ L∗, ∀A ⊆ L :

S after σ must A implies I after σ must A
2

The relation ≤te is an interesting implementation relation. It is deduced naturally from
testing implementations using the above argumentation, it is easily related to ≈te , it is
a preorder, and it implies ≤tr (proposition 3.10).

Proposition 3.10

1. ≈te = ≤te ∩ ≤−1
te

2. ≤te is a preorder.

3. ≤te ⊆ ≤tr 2

For conformance testing ≤te has a severe disadvantage: it is characterized using a
quantification over all σ ∈ L∗, which poses the problem of having to verify by means
of testing that S after σ must A implies I after σ must A for all σ ∈ L∗. In
particular, this requires that it has to be verified that all traces not in specification S
are also not in implementation I, as follows from the following characterization of ≤tr :

Proposition 3.11
I ≤tr S iff ∀σ 6∈ traces(S), ∀A ⊆ L : S after σ must A implies I after σ must A

2

In [Bri88] the implementation relation conformance conf was introduced to reduce this
problem (originally introduced as imp in [BSS87]). The relation conf reduces the quan-
tification to traces in the specification, so that it does not test for ≤tr . Taken together
the relations ≤tr and conf exactly give ≤te , as is expressed by proposition 3.13.1. This
property suggests a way of incremental testing. In order to test for ≤te , correctness
with respect to ≤tr and conf can be separately checked, not necessarily using the same
technique. We can think of checking conf by testing, while checking ≤tr by monitoring
or verification.

Definition 3.12
Let I, S ∈ LTS, then

I conf S =def ∀σ ∈ traces(S), ∀A ⊆ L :
S after σ must A implies I after σ must A

2



72 Chapter 3. Implementation Relations

Proposition 3.13

1. ≤te = ≤tr ∩ conf

2. conf is reflexive, but not transitive.
2

Testing for conf means checking whether the implementation does not have unspecified
deadlocks for traces in S. It is not checked whether an implementation has extra
traces, i.e. extensions in the functionality of the implementation with respect to the
specification remain undetected.

The relation conf can also be expressed using the observations Obs and Obs ′.

Proposition 3.14
I conf S iff ∀t ∈ LTS : ( Obs(t, I) ∩ traces(S) ) ⊆ Obs(t, S)

iff ∀t ∈ LTS : ( Obs(t, I) ∩ traces(S) ) ⊆ Obs(t, S) and
( Obs ′(t, I) ∩ traces(S) ) ⊆ Obs ′(t, S) 2

Another characterization of conf can be given in terms of must tests by reintroducing
the verdict inconclusive. As already noted in section 3.2 execution of a must test t[σ,A]

either deadlocks while performing σ, or it deadlocks after σ has been performed refusing
all actions in A, or it can reach a terminal state after having performed σ and one of the
actions in A. If our interest is to know what happens after σ all deadlocks that occur
before σ has been completely executed, are of no interest. If only such deadlocks can be
observed we assign the verdict inconclusive. The verdict pass is assigned if σ can be
observed and no deadlock occurs after σ, i.e. one of the actions in A can be performed.
If I performs σ but refuses all actions in A, the verdict fail is assigned. The relation
conf is obtained by requiring that all test cases that are successful, i.e. pass, with the
specification are not unsuccessful, i.e. pass or inconclusive, with the implementation.

Proposition 3.15
Let I, S ∈ LTS, and let application of a must test t[σ,A] ∈ LTM to I, S be defined by:

applyC(t[σ,A], I) =def







pass if σ 6∈ Obs(t[σ,A], I)
and ∃a ∈ A : σ ·a ∈ Obs(t[σ,A], I)

inconclusive if σ 6∈ Obs(t[σ,A], I)
and ∀a ∈ A : σ ·a 6∈ Obs(t[σ,A], I)

fail if σ ∈ Obs(t[σ,A], I)

then

I conf S iff ∀t ∈ LTM : applyC(t, S) = pass implies applyC(t, I) 6= fail

2

In the chapters 4 and 6 the implementation relation conf will be used as the most
important implementation relation for conformance testing. The relation ≤te is more of
theoretical interest, e.g. as the basis for correctness verification or correctness preserving
transformations (section 1.1). Note that an implementation that is tested and found
non-conforming according to conf is also not correct according to ≤te , but that the
converse does not hold.



3.4. The Conformance Relation CONF 73

3.4 The Conformance Relation CONF

Since the implementation relation conf is used in the next chapters as our notion of
conformance for conformance testing, this section elaborates on conf. conf is studied
within the testing framework of chapter 2. A definition of passing a test for labelled
transition system tests is given, and a new class of deterministic tests is introduced.
Finally, we consider logical conf-theories.

3.4.1 Requirements for CONF

It is easily checked, using proposition 3.12, that conf can be defined as an implemen-
tation relation compatible according to definition 2.10 with the requirement language
Lmust , together with the relations specC and satC.

Definition 3.16
Let r = after σ must A ∈ Lmust , then specC, satC ⊆ LTS × Lmust are defined by

◦ S specC r =def S
σ
⇒ and S after σ must A

◦ I satC r =def I after σ must A

The requirements specified by a specification S according to specC, respectively satisfied
by an implementation I according to satC, are denoted by:

◦ specsC(S) =def { r ∈ Lmust | S specC r }

◦ satsC(I) =def { r ∈ Lmust | I satC r }
2

Proposition 3.17
The implementation relation conf is compatible with the requirement language Lmust ,
specification relation specC, and satisfaction relation satC:

I conf S iff I satC specsC(S)

2

We have specC ⊂ satC, so (proposition 2.3) conf is reflexive. We already noticed that
conf is not transitive (proposition 3.13.2).

Remark 3.18
Note that intransitivity cannot be concluded from proposition 2.4. The first requirement
is not fulfilled: let I ∈ LTS, then there is no S ∈ LTS, such that specsC(S) = satsC(I),
viz. take I and σ ∈ L∗, such that σ 6∈ traces(I), implying I after σ must ∅ ∈
satsC(I). Then S must specify after σ must ∅ , which is not possible: S specC

after σ must ∅ iff σ ∈ traces(S) and σ 6∈ traces(S), hence such an S does not exist.
2



74 Chapter 3. Implementation Relations

Example 3.19
Consider again the vending machine in figure 2.7 as a behaviour specification BM . The
set of conformance requirements specified by BM for conf is given by

specsC(BM) = { r ∈ Lmust | BM specC r }
= { after ǫ must {shilling} , after ǫ must {shilling, coffee} , . . . ,

after shilling must {coffee-button} ,
after shilling must {tea-button} ,
after shilling must {coffee-button, tea-button} , . . . ,
after shilling·coffee must {coffee-button} , . . . ,
after shilling·tea must {tea-button} , . . . }

Consider the potential implementations in figure 2.8: whereas only I1 ≤te BM , we now
have: I1, I2, I3 conf BM . The relation conf does allow extra traces in the implementa-
tion, which are not in the specification, e.g. the trace penny of I2. I2 does not satisfy
the requirement after penny must ∅ of Smust (cf. section 2.4.2), but this is not a

specified requirement for conf, since BM

penny

6⇒ .

However, branches cannot be added arbitrarily: in the nondeterministic specification
of figure 2.10 supplying tea is optional: I1, I5 conf figure 2.10. But adding a branch
tea-button in the implementation I5 is not allowed: I7 /conf BM . Once the action tea-
button has been accepted also tea must be produced; I7 does not satisfy the requirement
after shilling·tea-button must {tea} .

2

3.4.2 Nondeterministic Tests with Trace Based Verdicts

In the previous section implementation relations were introduced based on observations
that test cases can make of implementations. For conformance testing we need to know
which observations make a test successful, i.e. we need to evaluate the observations (cf.
section 2.2.4), so that we can define the relation passes ⊆ LTS × LT (section 2.5).

In this subsection test cases in LTS are considered, with a corresponding relation
passesN ⊆ LTS × LTS. For passesN the deadlock observations in Obs(t, I) are eval-
uated using the deadlocks of t: all deadlocks in Obs(t, I) must also be deadlocks of
t.

Definition 3.20
Let t, I ∈ LTS, then I passesN t =def ∀σ ∈ Obs(t, I) : t after σ deadlocks

2

Remark 3.21
Note that t after σ deadlocks means that t must have the possibility of reaching
deadlock after performing σ, not that the resulting state of t in a particular test run is
a deadlock. We come back to this in the next subsection.

2



3.4. The Conformance Relation CONF 75

For a test case t ∈ LTS the tested requirements (section 2.5) are expressed in propo-
sition 3.22 by testreqsN (t). These requirements are satisfied if and only if the test is
passed (cf. (2.32)).

Proposition 3.22
Let testreqsN : LTS → P(Lmust) be defined by

testreqsN (t) =def { after σ must A | t after σ must L and

∃t′ ( t
σ
⇒ t′ and out(t′) ⊆ A ) }

then
I passesN t iff I satC testreqsN (t)

2

Proposition 3.23
Let S ∈ LTS, then the test suite

Πtr
conf

(S) =def { t ∈ LTS | traces(t) ⊆ traces(S), S passesN t }

is complete for conf-conforming implementations of S, i.e.

∀I ∈ LTS : I conf S iff I passesN Πtr
conf

(S)

2

The test suite Πtr
conf

(S) is complete: it detects all and only incorrect implementations.
For applying it to practical conformance testing it has too many superfluous test cases.
This means that selection of a suitable subset Π′ of test cases is necessary, preferably
such that the testing power is not affected, i.e. Π′ should also be complete. In chapter 4
test generation methods that algorithmically generate test suites from S that are more
efficient than Πtr

conf
(S) are studied.

r
r r�

��@
@@
τa

r
ra
r
r
r

r�
��@

@@
b c

a

r
r
r
a

b

r
r
r r
r�

��@
@@

b

a a

c

⊂ ⊂ ⊂ ⊂

Figure 3.2: Testing power of test cases.

Example 3.24
Test cases can be related to each other based on their testing power, i.e. the requirements
testreqsN that they test. A test case is more powerful if it tests more requirements. In
figure 3.2 a few test cases are related with respect to their testing power. The testing
power increases from left to right: the left-most test case does not test any requirement,
the next one tests after ǫ must {a} , the third one also tests after a must {b, c} ,



76 Chapter 3. Implementation Relations

the fourth one adds after a must {b} to the tested requirements, and the fifth test
case tests all these requirements plus after a must {c} .

It can be noted that a relation on LTS based on testing power is not easily related to
one of the previously defined relations on LTS.

2

3.4.3 Deterministic Tests with State Based Verdicts

We now consider test cases that have states labelled with the verdicts pass or fail.
Again test execution consists of trying to perform as many actions as possible, but
when a non-terminal state of the test case is reached this does not automatically imply
a fail-verdict; the verdict assigned is the label of that state (cf. remark 3.21). We
introduce a special kind of deterministic labelled transition systems DLTS to model
these tests.

Definition 3.25

1. A state labelled test case in DLTS is a 5-tuple 〈S, L, T, s0, v〉, such that 〈S, L, T, s0〉
is a deterministic labelled transition system, and v : S → {pass, fail} is a verdict
function.

Definitions applicable to LTS are extended to DLTS by defining them over the
underlying labelled transition system.

2. Let I ∈ LTS, t ∈ DLTS, then

I passesD t =def ∀σ ∈ Obs(t, I) : v( t after σ ) = pass

2

Note that v( t after σ ) is well-defined: σ ∈ Obs(t, I) implies σ ∈ traces(S), so there
exists a state tafterσ , and determinism of t guarantees that there is at most one such
a state.

Analogous to the previous subsection the tested requirements can be determined, and
a complete test suite of state labelled test cases can be derived.

Proposition 3.26
Let testreqsD : DLTS → P(Lmust) be defined by

testreqsD(t) =def { after σ must A | v( t after σ ) = fail
and out( t after σ ) ⊆ A }

then
I passesD t iff I satC testreqsD(t)

2

Proposition 3.27
Let S ∈ LTS, then the test suite



3.4. The Conformance Relation CONF 77

◦ Πdet
conf

(S) =def { t ∈ DLTS | traces(t) ⊆ traces(S), S passesD t }

is complete for conf-conforming implementations of S.
2

Remark 3.28
We did not include the verdict inconclusive in state labelled test cases. Sometimes
we will use it in the next chapters to indicate a test outcome which is not fail, but also
not intended. In such cases I passesD t should be read as v( t after σ ) 6= fail, so that
semantically the verdict inconclusive is the same as the verdict pass: no evidence
of non-conformance was found, that justifies assigning the verdict fail. (See also the
introduction of the relation passes in section 2.5).

2

r

r
r

rshilling

tea-button

tea

fail

fail

pass

pass

Figure 3.3: Example test case t ∈ DLTS.

Example 3.29
Figure 3.3 specifies a test case in DLTS that can be used to test the nondeterministic
vending machine of figure 1.7 (section 1.4). Test case t specifies to insert a shilling,
followed by pushing the tea-button, after which tea must be obtained. If the machine
under test indeed accepts the shilling, unlocks the tea-button, and supplies tea the
verdict pass is assigned. If the tea-button is not unlocked the verdict is also pass, but
if the purpose of the test case is to test the tea-button·tea branch, its intuitive meaning
is inconclusive. If the tea-button can be pushed but no tea is obtained the test fails.

Test case t tests for the requirements after ǫ must {shilling} , and after shilling·
tea-button must {tea} .

2

For conf-test suites test cases in LTS with passing expressed by passesN , and test
cases in DLTS with passesD, can be expressed in each other: a state labelled test case
is transformed into a test case in LTS by adding i; stop branches in all non-terminal
states with verdict pass. A test case in LTS is expressed by a test suite in DLTS. The
details of these transformations are not elaborated here. In the next chapters those test
cases are used that best suit the relevant needs.

Note that the combination of deterministic test cases in DLTS and passesN , which
corresponds to having pass verdicts in terminal states only, is not powerful enough
for conf-testing. The requirement after a ·b must {c} of S in figure 3.4 cannot be
tested with a test case that is deterministic and does not have the verdict pass in a



78 Chapter 3. Implementation Relations

r
r
r
r

a

b

c

pass

fail

pass

fail r
r
r
r
r

r
rr

r
r

�
��

�
��@

@@

S

a

b

c

a a

b

c

t u

τ

Figure 3.4: Testing with DLTS and passesN .

non-terminal state. To take into account the possible deadlock after a either the state
after a must be labelled pass as in t, or there must be the possibility that the test case
deadlocks after a as in u.

3.4.4 CONF and Logic

The relation conf can be studied in a logical framework, like Ltr in section 2.4.4. To
illustrate this we study some logical concepts for conf-theories, i.e. sets of requirements
T ⊆ specsC(S) for some S ∈ LTS, over the class of models LTS. We start with the
concept of derivation.

For Lmust there are no axioms, i.e. there are no formulae in Lmust that hold for any
process. This can be seen as follows: suppose after σ must A would be such an
axiom, with σ = b1 ·b2 ·. . .·bm ∈ L∗, then b1; b2; . . . ; bm; stop /satC after σ must A .

Inference rules for conf-theories are inspired by proposition 3.5.3. Let A1 ⊆ A2, then

after σ must A1 ⊢ after σ must A2 (3.4)

Derivation of a requirement r ∈ Lmust from a conf-theory T , S ⊢ r, is described for the
general case in section 2.4.4. For the inference rule (3.4) this can be simplified:

◦ the inference rule has only one premiss, hence derivations are linear ;

◦ a sequence of applications of (3.4) can be replaced by one application of (3.4).

Definition 3.30
Derivation for a conf-theory T ⊆ specsC(S), for some S ∈ LTS, is defined by

T ⊢ after σ must A =def ∃A′ ⊆ A : after σ must A′ ∈ T

2



3.4. The Conformance Relation CONF 79

Proposition 3.31
Derivation for conf-theories T over the class of models LTS with the satisfaction rela-
tion satC is sound and complete, i.e.

T ⊢ r iff ∀I ∈ LTS : I satC T implies I satC r

2

A set of requirements is logically independent if no requirements can be removed with-
out changing its meaning (section 2.4.4, equations (2.27) and (2.28)). To obtain an
independent conf-theory we must remove all requirements that can be derived from
other requirements in T , i.e. a requirement after σ must A must be removed if there
is a requirement after σ must A′ ∈ S with A′ ⊂ A.

Proposition 3.32
A conf-theory T is logically independent if and only if ∀σ ∈ L∗ : Mσ = min⊆(Mσ),
where Mσ =def { A ⊆ L | after σ must A ∈ T }.

2

Independent sets of requirements can be used as minimal representations of sets of
requirements. Unfortunately, like for Ltr (section 2.4.4), independent conf-theories
cannot always be obtained.

Example 3.33
For S no independent conf-theory exists (figure 3.5):

S = Σ { i; Σ { ai; stop | i ≥ n } | n ∈ N }

r

rr r

r r r r r r r r r r r

r

r r r r r

. . . . . . . . . . . . . . . . . . .

!!!!!!!!!!!!!!

#
#

#
#

#
##

�
�
�
�
��

�
�

�
�

��
. . .

�
�
�
�
��

�
�

�
�

��
. . .

. . . . . . . . . . . . . . . . . . .
. . .

�
�
�
�
��

�
�

�
�

��
. . .

AA

AA

AA

AA

AA

AA

AA

AA

AA

AA

AA

AA

��

��

��

��

��

��

HH
HH

HH
HH

HH

τ
τ

τ τ

aia1 aia2 ai
anaia0

a1a2 a3 a4a2 a3

Figure 3.5: S without independent conf-theory.

specsC(S) ⊇ { after ǫ must {a0, a1, a2, a3, a4, . . .} ,
after ǫ must {a1, a2, a3, a4, . . .} ,
after ǫ must {a2, a3, a4, . . .} ,
after ǫ must {a3, a4, . . .} , . . .}

= { after ǫ must { ai | i ≥ n } | n ∈ N }



80 Chapter 3. Implementation Relations

Viewing ⊢ as a relation on Lmust this corresponds to 〈Lmust ,⊢〉 not being well-founded
(appendix A), which results from the non-well-foundedness of 〈P(L),⊆〉. We can make
derivations that are infinite ‘to the left’:

...
⊢ after ǫ must {a3, a4, . . .}
⊢ after ǫ must {a2, a3, a4, . . .}
⊢ after ǫ must {a1, a2, a3, a4, . . .}
⊢ after ǫ must {a0, a1, a2, a3, a4, . . .}

2

The process IL that can always execute any action in L, satisfies any conf-theory,
implying that any conf-theory is consistent:

IL =def Σ{ a; IL | a ∈ L }

Remark 3.34
Elaborating these logical concepts for arbitrary theories in Lmust also containing require-
ments of the form after σ must ∅ is feasible, but more complicated. In particular,
derivation cannot be defined in a simple way like in definition 3.30, implying that the
general definition in section 2.4.4 must be used.

2

3.5 Concluding Remarks

This chapter introduced testing equivalence ≈te as a natural equivalence for distributed
systems. The implementation relations ≤te and conf were introduced to serve as im-
plementation relations. The relation ≤te is theoretically the most interesting. However,
for the purpose of conformance testing it has the disadvantage of being defined us-
ing a quantification over all σ ∈ L∗, which poses the problem of also having to test
properties for traces not in the specification. The implementation relation conf is
weaker: only properties of traces in the specification have to be verified. Consequently,
a conf-conforming implementation may exhibit extra functionality with respect to the
specification. In the next chapter we will consider conf as the main relation on which
test generation will be based.

The relations ≤te and conf are not the only possible implementation relations for la-
belled transition systems. Many others have been defined in literature. Examples are
the extension relation ext in [BS86], variations on conf in [Led90], the relations de-
scribed in [Gla90]. Variations in implementation relations can for instance be obtained
by varying the testers [Phi87, Abr87, Lan90], or varying the way test cases are applied to
implementations, in particular leaving the assumption of synchronous communication
between test case and implementation. This last possibility is elaborated in chapter 5.

The existence of many implementation relations raises the question which one to use
for a particular application. In chapter 7 this question is discussed as one of the open
problems.



Chapter 4

Synchronous Testing

4.1 Introduction

In the realm of labelled transition systems with synchronous observations the imple-
mentation relation conf, defined and studied in chapter 3, is a reasonable candidate
to formalize the notion of conformance for the purpose of conformance testing. There-
fore a natural next question is how to derive test suites for conf systematically from
a labelled transition system specification S. This section investigates such methods
for test derivation. An important point for these methods is that they should lead to
implementable algorithms, in order to be applicable to test derivation from realistically
sized specifications.

In the next section a test derivation algorithm is developed, starting from the fact that
for a complete test suite the requirements specified by a specification should be exactly
those tested by the derived test suite. The derived test cases are deterministic with state
based verdicts (DLTS, section 3.4.3). All derived test cases are then combined into one
nondeterministic test case (LTS, section 3.4.2): the canonical tester of [Bri87, Bri88].

If a specification is given by a behaviour expression with labelled transition system se-
mantics, there are two possibilities for the derivation of test cases. Either the behaviour
expression is replaced by its semantics, from which tests are derived using algorithms
for labelled transition systems, or the algorithms are transformed to work on behaviour
expressions as well. The first option poses problems when language constructs are used
that represent infinite labelled transition systems: finite, implementable representations
for infinite labelled transition systems have to be found. Of course, behaviour expres-
sions themselves are a logical candidate for this representation, leading to the second
option for the derivation of tests from behaviour expressions. In section 4.3 this method
is explored, using a subclass of behaviour expressions for which the semantics is always
a finite labelled transition system. In section 4.4 the language is extended to represent
infinite labelled transition systems.

Test derivation for conf from labelled transition systems is studied in [BSS87, Bri87,
Bri88]. Section 4.2 is based on them. In [Eer87] an implementation of test derivation

81



82 Chapter 4. Synchronous Testing

for a subset of the language LOTOS [BB87, ISO89b] is described based on the first
option above: language expressions are transformed to labelled transition systems from
which tests are derived. The CO-OP method [Wez90] is an example of the second
option: tests are derived by deriving attributes, viz. Compulsory and Options, directly
from behaviour expressions. The CO-OP method also works for a subset of LOTOS,
however, with this subset no infinite labelled transition systems can be represented. An
implementation is described in [Ald90]. First attempts to cope with infinite labelled
transition systems have been made in [Tre90, Doo91].

4.2 Test Derivation for Labelled Transition Systems

To do systematic test derivation from a labelled transition system S an algorithm is
required to construct test cases that are sound, and preferably, when taken together,
also exhaustive. This means that test cases must be derived, such that the requirements
tested by these test cases are exactly the requirements specified by S (equation (2.33)).
For a conf-test suite Π in DLTS this means that (definition 3.16, proposition 3.26):

testreqsD(Π) = specsC(S) (4.1)

Hence exactly for every after σ must A ∈ specsC(S), i.e. for every σ, A with

S
σ
⇒ and S after σ must A (4.2)

there must be after σ must A ∈ testreqsD(Π), i.e. there must be a test case t ∈ Π,
with

v( t after σ ) = fail and out( t after σ ) ⊆ A (4.3)

Moreover, t should not test requirements not in specsC(S).

Proposition 3.27 already presented such a test suite, but the test suite Πdet
conf

(S) contains
redundant test cases, and it is not systematically derived from S in such a way that
it could easily be implemented in a test derivation algorithm. We will now derive an
algorithm with which test cases can be generated from a labelled transition system
specification S. The algorithm is derived in three steps: first it is assumed that the set
of observable actions L is finite, and that S has finite behaviour. This results in the
algorithm in proposition 4.5. In the second step we give up the assumption of finite
behaviour, and in the final step also L may be infinite. The resulting algorithm is
presented in proposition 4.10.

Finite L, finite behaviour

The first step in generating the test cases is the derivation from S of the requirements
after σ must A according to (4.2).



4.2. Test Derivation for Labelled Transition Systems 83

We can start with σ = ǫ, and determine all A ⊆ L with S after ǫ must A . Let A ⊆ L
with after ǫ must A , then for this A there must be a test case tA such that (4.3):

v( tA after ǫ ) = v(tA) = fail and out( tA after ǫ ) = out(tA) ⊆ A

Moreover, tA should not test requirements not specified by S. This is accomplished by
having out(tA) = A:

tA = Σ{a; ta | a ∈ A} and v(tA) = fail

where ta is the behaviour of the test case after a, which is elaborated below.

The test case tA tests not only for requirement after ǫ must A , but also for all
requirements after ǫ must A′ with A ⊆ A′. But since S after ǫ must A implies
after ǫ must A′ for all A′ ⊇ A (proposition 3.5.3), no unspecified requirements are
tested. This property implies that if there is a test case tA that tests requirement
after ǫ must A , all test cases tA′ with A ⊆ A′ can be removed. Hence, it suffices to
derive test cases for those sets A satisfying S after ǫ must A , that are minimal with
respect to ⊆.

Since for each A satisfying S after ǫ must A always A ∩ out(S) ⊆ A, and
S after ǫ must (A ∩ out(S)) , it suffices to consider only A ⊆ out(S). This leads
to the definition of the must set Mǫ(S). Test cases tA must be made for each A ∈
min⊆(Mǫ(S)).

Definition 4.1
Let S ∈ LTS, then Mǫ(S) =def { A ⊆ out(S) | S after ǫ must A }

2

The next step is to construct the behaviour of the test case after a: ta. ta must test
the requirements after a must A . We can make this a recursive procedure if we can
repeat the calculation with σ = ǫ, i.e. if there is an S ′ such that

S after a must A iff S ′ after ǫ must A (4.4)

Such S ′ can be defined; it is given by the expression choice S after a (definition 4.2),
and it indeed satisfies property (4.4) (proposition 4.3.3, using that a ∈ out(S) ⊆
traces(S)).

The more general expression choice S after σ defines the nondeterministic choice
among all states that can be reached by S after having performed σ. It models exactly
the behaviour of S after σ up to ≈te , as is expressed by propositions 4.3.2 and 4.3.3.

Definition 4.2
Let S ∈ LTS, σ ∈ L∗, then choice S after σ =def Σ{ i; S ′ | S ′ ∈ S after σ }

2

Proposition 4.3
Let S ∈ LTS, σ, σ1, σ2 ∈ L∗, A ⊆ L, then



84 Chapter 4. Synchronous Testing

1. choice S after σ =def Σ{ i; S ′ | S
σ
⇒S ′ }

≈te Σ{ i; S ′ | S
σ
→S ′ }

2. choice S after ǫ ≈te S

3. For σ1 ∈ traces(S) or σ2 6= ǫ:

S after σ1 ·σ2 must A iff ( choice S after σ1 ) after σ2 must A

4. choice S after σ1 ·σ2 ≈te choice ( choice S after σ1 ) after σ2
2

Now construction of ta consists of applying recursively the previous steps to the spec-
ification choice S after a . In order to test all requirements after a must A for all
a ∈ out(S), we must be sure that for each a ∈ out(S) there is at least one test case tA
that can make an a-transition. Due to the minimalization in the previous step this is
not guaranteed, see example 4.4.

r
r
r r
r�

��@
@@
τb

c a

Figure 4.1:

Example 4.4
In figure 4.1 Mǫ(S) = {{a}, {a, b}}, and min⊆(Mǫ(S)) = {{a}}. If only test cases
are made for min⊆(Mǫ(S)), then there is no test case to make a b-transition: the
requirement after b must {c} cannot be tested.

2

Guaranteeing transitions for all a ∈ out(S) can be accomplished in different ways by
adding test cases with verdict pass: any test case t ∈ DLTS with v( tafter ǫ ) = v(t) =
pass can always be added to a test suite, without affecting the soundness. In this case
we can add tA with

A = out(S)\
⋃

min⊆(Mǫ(S)) or A = out(S)

Another possibility is to add test cases with verdict fail, such that they do not test ad-
ditional requirements. This can be accomplished by choosing any set M ⊇ min(Mǫ(S)),
such that no labels ‘are lost’:

⋃

Mǫ(S) =
⋃

M (4.5)

For the moment we take the first possibility, and add the test case tout(S).

The above argumentation leads to proposition 4.5. Proposition 4.5.1 presents an al-
gorithm to obtain a sound test case; proposition 4.5.2 gives sufficient sound test cases



4.2. Test Derivation for Labelled Transition Systems 85

for a complete test suite. The recursion is guaranteed to terminate by the finite be-
haviour that is assumed for S: after a finite number of recursions there is S ′ such that
out(S ′) = ∅, hence A ⊆ out(S ′) implies A = ∅, and t∅ = Σ∅ = stop.

Proposition 4.5
Let L be finite, and let S ∈ LTS have finite behaviour.

1. tA =def Σ{a; ta | a ∈ A} is a sound test case for S, if

A ⊆ out(S), and
v(tA) = fail implies S after ǫ must A , and
ta is a sound test case for choice S after a .

2. The test suite

Π1
conf

(S) =def { tA ∈ DLTS | tA = Σ{a; ta | a ∈ A},
( A ∈ min⊆(Mǫ(S)) and v(tA) = fail )

or ( A = out(S) and v(tA) = pass ),
ta ∈ Π1

conf
( choice S after a ) },

is complete.
2

Finite L, infinite behaviour

If the behaviour of S is infinite this influences proposition 4.5 in the sense that the
recursion is not guaranteed to terminate. It can be terminated at any moment by
choosing A = ∅, which makes t∅ = Σ∅ = stop. The verdict v(t∅) must be pass. The
choice A = ∅ with the corresponding verdict pass is always valid: it does not test for any
requirement, hence it does not affect soundness. By making A = ∅ when out(S) 6= ∅,
finite test cases can be obtained also for specifications S with infinite behaviour. A
complete test suite is obtained by combining all test cases with finite, but arbitrarily
long behaviour. This principle of describing infinite behaviour by a set of processes with
arbitrary, finite length is referred as the approximation induction principle [Bae86].

Infinite L, infinite behaviour

If L is infinite a problem arises for min⊆(Mǫ(S)) in proposition 4.5.2. Because of non-
well-foundedness of the poset 〈P(L),⊆〉 for infinite L, minimal elements in Mǫ(S) need
not exist.

Example 4.6
Consider again S in figure 3.5, example 3.33. There is the following infinite sequence



86 Chapter 4. Synchronous Testing

of sets A ⊆ L, each satisfying S after ǫ must A :

...
⊆ {a3, a4, . . .}
⊆ {a2, a3, a4, . . .}
⊆ {a1, a2, a3, a4, . . .}
⊆ {a0, a1, a2, a3, a4, . . .}

There is no minimal element in Mǫ(S).
2

A sufficient condition for minimal elements to exist is image-finiteness of S (defini-
tion 1.11.6): if S after ǫ is finite, then for each A with S after ǫ must A there exists
a finite A′ ⊆ A with S after ǫ must A′ , viz. A′ = {a1, a2, . . . , an} with ai ∈ out(Si)
for each Si ∈ S after ǫ . If 6 ∃ai ∈ out(Si) for some i then Mǫ(S) = ∅. Existence of
finite, smaller elements guarantees existence of minimal elements: the set of all finite
subsets of L is well-founded. In this case proposition 4.5 is still valid.

Proposition 4.7
If S ∈ LTS is image-finite, and Mǫ(S) 6= ∅, then minimal elements of Mǫ(S) exist.

2

If S is not image-finite, minimal elements of Mǫ(S) need not exist. Optimizations of
Mǫ(S) can be found by removing elements A if there is A′ ∈ Mǫ(S) such that A′ ⊆ A,
but it may be that this optimization process never ends, like in example 4.6. We
introduce a reduced must set, defined by the preorder ⊑ over sets of sets of actions, to
formalize this notion of optimization. M1 is a reduced must set of M2, M1 ⊑ M2, if M1

is obtained from M2 by a few optimization steps, i.e. by removing some elements from
M2, but such that only those elements are removed for which there is a smaller element
(rcl⊆(M1) = rcl⊆(M2)), and such that no actions are removed (

⋃
M1 =

⋃
M2). (Cf.

(4.5).) If a must set is right-closed, i.e. if rcl(M) = M , it is denoted by M , like Mǫ(S).

Definition 4.8
Let M1, M2 ∈ P(P(L)), then

M1 ⊑ M2 =def M1 ⊆ M2 and rcl⊆(M1) = rcl⊆(M2) and
⋃

M1 =
⋃

M2

2

Proposition 4.9
⊑ is a partial order.

2

The generalization of proposition 4.5.2 to cope with both infinite L and infinite be-
haviour, is proposition 4.10. It includes in every step the possibility to terminate the
test case by having A = ∅, and min⊆ is replaced by ⊑. Note that proposition 4.10
does not define a function: there are different possibilities for M ⊑ Mǫ(S), and each M
results in another, complete test suite.



4.2. Test Derivation for Labelled Transition Systems 87

Proposition 4.10
Let S ∈ LTS, then Π ∈ P(DLTS) is a complete test suite for S with respect to conf,
if ∃M ⊑ Mǫ(S):

Π = { tA ∈ DLTS | tA = Σ{a; ta | a ∈ A},
( A ∈ M and v(tA) = fail )

or ( A = out(S) and v(tA) = pass )
or ( A = ∅ and v(tA) = pass ),
for each a ∈ A : ta is element of a complete test suite
for choice S after a }

2

A more algorithmic way to express this is easily derived:

Algorithm 4.11
Let S ∈ LTS, then a complete test suite for S is obtained as follows:

1. compute Mǫ(S);

2. compute any M ⊑ Mǫ(S);

3. determine all combinations of A ⊆ L and verdict v, such that

( A ∈ M and v = fail )
or ( A = out(S) and v = pass )
or ( A = ∅ and v = pass );

4. for each combination of A and v add the test case t = Σ{a; ta | a ∈ A} with
v(t) = v to the test suite;

5. for each ta with a ∈ A repeat the algorithm for the specification choice S after a.
2

If we wish to derive only a few sound test cases, it is sufficient to choose one or more
sets A ⊂ L with corresponding verdicts in step 3. Any choice provides a sound test
case; the combination of all possible choices makes the test suite complete.

r
r
r
r

shilling

tea-button

tea

pass

fail

pass

failr
r
r
r

shilling

coffee-button

coffee
pass

fail

fail

fail

r
r
r
shilling

coffee-button

fail

fail

pass

r
r

r
rr

r���@
@@

coffee-button

shilling

tea

tea-button

fail

fail

pass pass

fail

fail
coffee

Figure 4.2: Test cases.

Example 4.12
Figure 4.2 gives some test cases for the vending machine M of figure 1.7 (section 1.4).
The last test case is obtained using algorithm 4.11 as follows:



88 Chapter 4. Synchronous Testing

step 1,2: M = Mǫ(S) = {{shilling}};

step 3: A = {shilling} and v(t) = fail;

step 4,5: t{shilling} = shilling ; tshilling ,
with tshilling a sound test case for choice S after shilling
= i; ( coffee-button; coffee; stop2 tea-button ; tea; stop )

2 i; coffee-button; coffee; stop;

step 1,2: M = Mǫ( choice S after shilling )
= {{coffee-button, tea-button}, {coffee-button}};

step 3: A = {coffee-button} and v(t) = fail;

step 4,5: tshilling = coffee-button; tcoffee-button ,
with tcoffee-button a sound test case for

choice ( choice S after shilling ) after coffee-button = coffee; stop;

step 1,2: M = Mǫ(coffee; stop) = {{coffee}};

step 3: A = ∅ and v(t) = pass;

step 4,5: tcoffee-button = Σ∅ = stop.

The second test case is obtained using proposition 4.5.1; it is not contained in any test
suite derived according to proposition 4.5.2 or proposition 4.10.

2

4.2.1 The Canonical Tester

The test cases in the test suite of proposition 4.10 can also be expressed in LTS, with
passing a test case defined by passesN (definition 3.20): add a branch i; stop in every
state t after σ of the test case with verdict pass. Such an extra branch allows the
test case to deadlock ( t after σ deadlocks ), thus also resulting in a successful test
according to passesN . Note that a terminal state in a test case in the test suite of
proposition 4.10 always has verdict pass.

If test cases are written in LTS the nondeterminism can be used to combine different
test cases. The choice between execution of different test cases is then expressed by
a nondeterministic choice in one test case. This principle can be applied to combine
all test cases into one. Using proposition 4.10 it is not difficult to derive such a test
case. The resulting test case is the canonical tester, introduced in [Bri87]. In [Bri87] it
is proved that the canonical tester of a specification is unique modulo ≈te , and that it
possesses a mirror property: the canonical tester of a canonical tester is equal modulo
≈te to the original specification (proposition 4.15).

Definition 4.13 ([Bri87])
Let S ∈ LTS, then CS ∈ LTS is a canonical tester of S, if

◦ traces(CS) = traces(S), and

◦ {CS} is complete for conf using passesN .
2



4.3. Language Based Test Derivation 89

Proposition 4.14
Let Can(S) =def Σ{ i; Σ{ a; Can( choice S after a ) | a ∈ A } | A ∈ MS },

with

{

MS ⊑ Mǫ(S) if Mǫ(S) 6= ∅
MS = { ∅, out(S) } if Mǫ(S) = ∅

then Can(S) is a canonical tester of S.

Note that there may be many choices for MS, hence Can(S) is not uniquely determined.

2

Proposition 4.15 ([Bri87])

1. If C1, C2 ∈ LTS are both canonical testers of S, then C1 ≈te C2.

2. If CS is a canonical tester of S, and CCS
is a canonical tester of CS,

then CCS
≈te S.

2

r
r
r
r
r

r
r
rr
r

r
r

r
r r
r r
r

�
��@

@@

�
�

��Q
Q

QQ

τ

shilling

τ

coffee-button

coffee

τ

τ

tea-buttoncoffee-button

τ

tea

τ

τ

τ

coffee

τ

r
r

r
r
r
r
r r

r
r

�
�

��Q
Q

QQ

�
��@

@@

shilling

ττ

coffee-button tea-button coffee-button

coffeecoffee tea
≈te

Figure 4.3: Canonical tester.

Example 4.16
Figure 4.3 gives the canonical tester of the vending machine of figure 1.7. The left
process is obtained by following proposition 4.14 step by step; the right one is testing-
equivalent ≈te to it.

2

4.3 Language Based Test Derivation

The theory of test derivation for labelled transition systems presented in section 4.2 is
complete, in the sense that for each labelled transition system a test suite can be derived.



90 Chapter 4. Synchronous Testing

Since labelled transition systems form a semantical model for a number of behavioural
specification formalisms, we now could derive a test suite from any expression in such a
language by first deriving the labelled transition system forming its semantics, and then
using one of the algorithms of section 4.2. However, such a labelled transition system
is large, usually even infinite in the number of states and transitions. This means that
it is practically unfeasible to use this labelled transition system for the derivation of
tests, especially if we wish to implement the test derivation algorithms in executable
programs. A finite representation of specification and test suite is then particularly
needed. This problem can be solved if test suites are derived directly from a language
expression, without explicitly deriving its labelled transition system semantics. Such
an algorithm should be correct, i.e. the semantics of the resulting test case must be
equivalent to a test case obtained from the semantics of the behaviour expression. This
is expressed by the diagram in figure 4.4: it shall commute.

�
�

�
�	

@
@

@
@R

@
@

@
@R

�
�

�
�	

generation

semantics

T ′ ∈ LTS

T ∈ LFDTB′ ∈ LTS

B ∈ LFDT

test

test

semantics

generation

=

Figure 4.4: Test generation from behaviour expressions.

For easy test derivation from language expressions it is desirable that the algorithm is
compositional: test cases, or at least attributes from which test cases can be derived,
should be computed following the syntax of the expression. This section develops such
a compositional test derivation algorithm. The language that is used is very simple, it
is the language BEX defined in section 1.4 (definition 1.6), restricted to:

stop a; B i; B B 2B (4.6)

The algorithm is related to the CO-OP method [Wez90], which gives compositional
rules for test derivation for the language Basic LOTOS [BB87]. In the next section our
language is extended with the possibility to define an infinite number of transitions, i.e.
infinite choice is added.

The starting point for language based test derivation is algorithm 4.11. It turns out
that this algorithm cannot be applied directly to language expressions. We transform it
by introducing acceptance sets, and we give compositional rules to compute these sets
from language expressions.



4.3. Language Based Test Derivation 91

4.3.1 Acceptance Sets

Analysis of algorithm 4.11 shows that the attributes needed to derive a test case are
M ⊑ Mǫ(S), out(S), and choice S after a . While it turns out that out(S) and
choice S after a are easily determined from a behaviour expression, M ⊑ Mǫ(S) poses
more problems. It consists of sets that are defined using universal quantification over all
states that can be reached after ǫ. This makes it difficult to determine these sets from
subexpressions of a behaviour expression, e.g. for Mǫ(B) of B = i; a; stop2 i; b; stop
information from both operands of 2 must be used. The use of sets of actions that
are refused, B after ǫ refuses A , solves this problem: these sets are defined using
existential quantification over states. For convenience of representation we do not take
these sets of refused actions, but their complement: the sets of actions that can occur
in a state. We call them acceptance sets, and denote them by Cǫ. Like with must sets,
reduced acceptance sets are defined using the relation ⊑.

We show that on the one hand reduced acceptance sets are easily related to must sets
using a transformation Ψ (proposition 4.18.3 and 4.18.4), so that they can be used
as the basis for test derivation, while on the other hand they can be compositionally
determined from behaviour expressions (proposition 4.24).

Definition 4.17

1. Cǫ(S) =def { out(S)\A | S after ǫ refuses A }

2. The function Ψ : P(P(L)) → P(P(L)) is defined for C ∈ P(P(L)), by:

Ψ(C) =def { A ⊆
⋃

C | ∀A′ ∈ C : A ∩ A′ 6= ∅ }

3. C1 ∈ P(P(L)) is a reduced acceptance set of C2 ∈ P(P(L)), if C1 ⊑ C2.
2

Proposition 4.18
Let S ∈ LTS, then

1. { out(S ′) | S
ǫ
⇒S ′ τ

−−→/ } ∪ {out(S)}

⊑ { out(S ′) | S
ǫ
⇒S ′ }

⊑ { A ⊆ out(S) | ∃S ′ ( S
ǫ
⇒S ′ and out(S ′) ⊆ A ) }

= Cǫ(S)

2. If C1 ⊑ C2 then Ψ(C1) = Ψ(C2)

3. Let C ⊑ Cǫ(S), then Ψ(C) = Mǫ(S)

4. Let M ⊑ Mǫ(S), then Ψ(M) = Cǫ(S)
2

The transformation Ψ(C) defines a set of sets such that the elements have a non-empty
intersection with a given set of sets C. An operational way to express this for finite C is
‘form sets by taking one (or more) element from each set in C’ (cf. the function orth in
[PF90, Wez90]). This is formally expressed by the transformation Ψo (definition 4.19).
Like for must sets, if C is finite a minimally reduced acceptance set can always be found:



92 Chapter 4. Synchronous Testing

finiteness is a sufficient condition for minimal elements to exist (cf. appendix A). The
set Ψo(C) may be infinite, but all elements are finite: Ψo(C) is a subset of the set
of all finite subsets of L. This implies that also for Ψo(C) minimal elements exist
(proposition A.2, cf. proposition 4.7). All this is applicable to behaviour expressions in
BEX restricted to (4.6): such expressions are image-finite (definition 1.11.6), which is
a sufficient condition for the existence of finite reduced acceptance sets. (Note that the
full language BEX is not image-finite, e.g. Σ{i; ai; stop | i ∈ N}.)

Definition 4.19
Let C = {A1, A2, . . . , An} be a set or multi-set, then

Ψo(C) =def { {a1, a2, . . . , an} | ai ∈ Ai, 1 ≤ i ≤ n }

2

Lemma 4.20

1. If S ∈ LTS is image-finite, then

◦ there is a finite C ⊑ Cǫ(S);

◦ for any σ: choice S after σ is image-finite.

2. If C ⊑ Cǫ(S) is finite, then

◦ Ψo(C) ⊑ Ψ(C);

◦ min⊆(C) ∪ {out(S)} ⊑ Cǫ(S);

◦ min⊆(Ψo(C)) ∪ {out(S) | ∅ 6∈ C} ⊑ Ψ(Cǫ(S)).

3. The language BEX restricted to (4.6) is image-finite.
2

Now algorithm 4.11 is adapted in a straightforward way to the use of finite reduced
acceptance sets. Proposition 4.18.3 and lemma 4.20 are used to compute a reduced
must set.

Algorithm 4.21
Let S ∈ LTS be image-finite, then a sound test case t ∈ DLTS for S is obtained by:

1. choose M ⊑ Ψo(C), where C ⊑ Cǫ(S);

2. choose: A ∈ M and v(t) = fail,
or: if M = ∅ then A = out(S) and v(t) = pass
or: A = ∅ and v(t) = pass;

3. t = Σ{ a; ta | a ∈ A }, where ta is a sound test case for choice S after a .
2

Remark 4.22
A reduced acceptance set is related to the set Compulsory of the CO-OP method in
[Wez90]:

Compulsory(S) =def { out(S ′) | S
ǫ
⇒S ′ τ

−−→/ }



4.3. Language Based Test Derivation 93

the difference being that for a reduced acceptance set C always
⋃

C = out(S), cf. the
first characterization in proposition 4.18.1. Having this property the Options of the
CO-OP method,

Options(S) =def { a ∈ L | ∃S ′ ( S
ǫ
⇒S ′ τ−→ and S ′ a−→ ) }

are not needed anymore. It is another way of taking care that no actions ‘are lost’ (see
the previous section).

As an example consider the process S = a; stop2 i; b; stop:

Compulsory(S) = {{b}}
Options(S) = {a}

Cǫ(S) = {{b}, {a, b}}

min⊆(Cǫ(S)) = Compulsory(S), out(S)\
⋃

Compulsory(S) = Options(S).
2

Remark 4.23
The subscript ǫ in Cǫ(S), and also in Mǫ(S), refers to the fact that we use acceptance

and must sets after trace ǫ: S
ǫ
⇒S ′. In [Tre90] these sets were generalized for arbitrary

σ, which gives a model for processes modulo ≈te .
2

4.3.2 Compositional Test Derivation

Now that we have acceptance sets as a way to derive test cases, compositional rules are
defined with which acceptance sets can be compositionally derived from the restricted
class of behaviour expressions in (4.6). We introduce outB(B) and choiceB B after g
as the counterparts of out and choice .. after .. for behaviour expressions. The rules
for outB(B) follow straightforwardly from the definition of out ; for choiceB B after a
proposition 4.3.1 is used as starting point, while a specific C ⊑ Cǫ(B), denoted by
C(B), is derived using the characterizations in proposition 4.18.1. Moreover, it turns
out that in the compositional rule for 2 information about the stability of the operands
is required (definition 1.11.8). We denote stability of B by the predicate stB(B), and
add it as an extra attribute, which is to be computed compositionally.

Table 4.1 gives all rules, and proposition 4.24 states the correctness of the rules: for each
attribute the value computed following table 4.1 coincides with applying the correspond-
ing definition to the labelled transition system semantics. Using table 4.1 algorithm 4.21
can directly be applied. It will be evident that the canonical tester algorithm Can(S)
(proposition 4.14) can be adapted analogously.

Proposition 4.24
Let B ∈ BEX , restricted to (4.6), and let outB(B), stB(B), C(B), and choiceB B after g
be compositionally defined in table 4.1, then

◦ outB(B) = out(ℓts(B))



94 Chapter 4. Synchronous Testing

◦ stB(B) iff ℓts(B) is stable

◦ C(B) ⊑ Cǫ(ℓts(B))

◦ choiceB B after g ≈te choice ℓts(B) after g
2

B outB(B) stB(B) C(B) choiceB B after g

stop ∅ true {∅} stop

a;B1 {a} true {{a}} i;B1 if a = g
stop if a 6= g

i;B1 outB(B1) false C(B1) choiceB B1 after g

B1 2B2 outB(B1)
∪outB(B2)

stB(B1)
and stB(B2)

{outB(B)}
∪ if 6stB(B1) then C(B1)
∪ if 6stB(B2) then C(B2)

choiceB B1 after g
2 choiceB B2 after g

Table 4.1: Compositional computation of acceptance sets.

Example 4.25
Consider the behaviour expression in example 1.8 representing the process of figure 1.7
(section 1.4):

B = shilling ; (coffee-button; coffee; stop 2 tea-button ; tea; stop)
2 shilling ; coffee-button; coffee; stop

The first test case in figure 4.2 is derived following algorithm 4.21 and proposition 4.24,
as follows, using B = B1 2B2, with:

B1 = shilling ; (coffee-button; coffee; stop 2 tea-button ; tea; stop)
B2 = shilling ; coffee-button; coffee; stop

step 1: outB(B) = outB(B1 2B2) = outB(B1) ∪ outB(B2) = {shilling}

stB(B) iff stB(B1) and stB(B2) iff true and true

C(B) = {outB(B)} = {{shilling}}

Ψo(C(B)) = Ψo({{shilling}}) = {{shilling}}

Choose A = {shilling}, and v = fail.

choiceB B after shilling
= choiceB B1 after shilling 2 choiceB B2 after shilling
= i; (coffee-button; coffee; stop2 tea-button ; tea; stop)

2 i; coffee-button; coffee; stop



4.3. Language Based Test Derivation 95

step 2: Let B′ = choice B after shilling , then

outB(B′) = {coffee-button, tea-button}, B′ is not stable,

C(B′) = {outB(B′)}
∪ C(i; (coffee-button; coffee; stop2 tea-button ; tea; stop))
∪ C(i; coffee-button; coffee; stop)

= {{coffee-button, tea-button}, {coffee-button}}

Ψo(C(B′)) = Ψo({{coffee-button, tea-button}, {coffee-button}})
= {{coffee-button, tea-button}, {coffee-button}}

Choose A = {coffee-button} and v = fail.

choiceB B′ after coffee-button
= choiceB i; (coffee-button; coffee; stop2tea-button ; tea ; stop)

after coffee-button
2 choiceB i; coffee-button; coffee; stop after coffee-button

= choiceB (coffee-button; coffee; stop2tea-button ; tea; stop)
after coffee-button

2 choiceB coffee-button; coffee; stop after coffee-button
= choiceB coffee-button; coffee; stop after coffee-button

2 choiceB tea-button ; tea; stop after coffee-button
2 i; coffee; stop

= i; coffee; stop2 stop2 i; coffee; stop
= i; coffee; stop

step 3: Let B′′ = choiceB B′ after coffee-button = i; coffee; stop, then

outB(B′′) = {coffee}, B′′ is not stable, C(B′′) = {{coffee}},
Ψo(C(B′′)) = {{coffee}}, and choiceB B′′ after coffee = i; stop.

Choose A = {coffee}, and v = fail.

step 4: Let B′′′ = choiceB B′′ after coffee = i; stop, then
outB(B′′′) = ∅, C(B′′′) = {∅}, and Ψo(C(B′′′)) = ∅.

A = outB(B′′′) = ∅, and v = pass.

2

Compositional rules for the other syntactic constructs of BEX can be derived analo-
gously. As far as BEX coincides with Basic LOTOS the related attributes Compulsory
and Options (remark 4.22) can be found in [Wez90].

The rules in table 4.1 can be interpreted as attribute rules defining values for the
synthesized attributes out(B), etc. in an attribute grammar based on BEX . Using the
rules of the CO-OP method such an attribute grammar was developed in [Ald90], on
the basis of which COOPER was generated, a tool that derives tests from Basic LOTOS
expressions.



96 Chapter 4. Synchronous Testing

4.4 Test Derivation with Infinite Branching

In the previous section we studied test derivation from behaviour expressions, where,
in principle, we could have first derived the labelled transition system semantics, and
then applied a test derivation algorithm for labelled transition systems. We now extend
our language such that infinitely branching labelled transition systems can be defined.
First this language is defined, then we consider the initial behaviour of test cases, i.e.
how to determine the set A in the test case Σ{a; ta | a ∈ A} of the test derivation
algorithms (e.g. algorithm 4.21), and finally the subsequent behaviour of a tester, i.e.
the part ta, is studied.

A Language with Infinite Branching

We define a language BEXv that allows infinite branching. This is accomplished by
introducing actions consisting of a pair of a gate and a value. Let G be the set of gates,
which we assume to be finite, and let V be the set of possible values, not necessarily
finite, then the set of observable actions L is G×V . Infinite branching is introduced by
having variables over these values in behaviour expressions. Let x be a variable from a
domain of variables X, and let g be a gate, then

g?x; B

represents a labelled transition system that can make a transition 〈g, v〉 to B for any
value v that x can have. The expression is equivalent to

Σ { 〈g, v〉; B | v ∈ V }

The values that x may have can be restricted by a predicate. Let p be a predicate in
which x occurs as a free variable, e.g. x > 5, then

g?x : x > 5; B = Σ { 〈g, v〉; B | v ∈ V, v > 5 }

The variable x introduced in the expression g?x; B, may occur as a free variable in the
subsequent behaviour B, i.e. B may depend on the value of x. The value of variable x
in B is determined by the transition that g?x; B makes in a particular execution:

g?x; B = Σ { 〈g, v〉; B | v ∈ V } 〈g,v〉−−−→B[v/x]

B[v/x] denotes the expression B where each free occurrence of x is replaced by the
value v.

The usual interpretation of actions consisting of a gate and a value is that of value com-
munication. A gate represents a place where communication occurs, e.g. a SAP (Service
Access Point) of a protocol, or a PCO (see sections 1.3.3 and 2.2.6). A value represents
the message that is communicated at that place. This is the kind of communication as
it occurs for instance in the formal description technique LOTOS.



4.4. Test Derivation with Infinite Branching 97

For the language BEXv, offering this kind of infinite branching, we restrict the values
to natural numbers, denoted by N, and we assume the existence of a class of predi-
cates P over the natural numbers. We refrain from a precise formal definition of P ,
but we assume that all predicates are effectively computable. They may contain stan-
dard relations like =, <,≤, . . ., constants 0, 1, 2, . . ., and arithmetic operators +,−, . . ..
Moreover, variables x, y, . . . in X can be used in predicates. The variables used in a
predicate p ∈ P are the free variables of that predicate, denoted by FV (p). A closed
predicate has no free variables: FV (p) = ∅. The substitution of a value v for a variable
x in a predicate p is denoted by p[v/x]. It is the result of the replacement of all free
occurrences of x in p by v. The semantics of a closed predicate is a boolean value, either
true or false, obtained using the usual evaluation rules for natural numbers.

Definition 4.26
Let G be a finite set of gates, X a set of variables, P a set of predicate expressions over
N, with FV (p) denoting the free variables of a predicate p ∈ P , and p[v/x] denoting
the substitution of a variable x ∈ X in p by a value v ∈ N. Let g range over G, p over
P , x over X, and v over N.

1. The syntax of the language BEXv is defined by

B =def stop | g?x : p; B | i : p; B | B 2B

2. The free variables of B ∈ BEXv, FV (B), are:

FV (stop) =def ∅
FV (g?x : p; B) =def (FV (B) ∪ FV (p) )\{x}
FV (i : p; B) =def FV (B) ∪ FV (p)
FV (B1 2B2) =def FV (B1) ∪ FV (B2)

3. The substitution B[v/y] is the behaviour expression defined by:

stop[v/y] =def stop

(g?x : p; B)[v/y] =def

{

g?x : p; B if x = y
g?x : p[v/y]; B[v/y] if x 6= y

(i : p; B)[v/y] =def i : p[v/y]; B[v/y]
(B1 2B2)[v/y] =def B1[v/y] 2B2[v/y]

4. A behaviour expression B ∈ BEXv is closed, if FV (B) = ∅; otherwise B is an
open behaviour expression. The set of closed behaviour expressions is denoted by
BEXv

c.

5. The semantics of a closed behaviour expression B ∈ BEXv
c is defined using an

interpretation ℑ of BEXv
c in BEX . The semantics of B is the labelled transition

system ℓts(ℑ(B)), where

ℑ(stop) =def stop
ℑ(g?x : p; B) =def Σ{〈g, v〉;ℑ(B[v/x]) | p[v/x]}

ℑ(i : p; B) =def

{

i;ℑ(B) if p
stop if not p

ℑ(B12B2) =def ℑ(B1)2ℑ(B2)



98 Chapter 4. Synchronous Testing

6. We introduce the following notation:

◦ Let E be an expression denoting a natural number, and let y be a vari-
able occurring nowhere in the behaviour expression under consideration, then
g!E; B =def g?y : y = E; B.

◦ g?x; B =def g?x : true; B

◦ Like for BEX ‘;’ binds stronger than ‘2’.
2

Example 4.27
An example of a behaviour expression in BEXv

c is

B = g?x : x < 20; h!x + 2; stop
2 i; g?y : y > 10; h!y; stop

2

Initial Behaviour of a Test Case

This subsection deals with the first step in test case derivation: the initial behaviour
of a test case. It involves determining a set A ⊆ L such that A ∈ M ⊑ Mǫ(S), or
expressed in acceptance sets: A ∈ M ⊑ Ψ(C) where C ⊑ Cǫ(S). We consider closed
behaviour expressions only. Note that closedness of g?x : p; B implies that x is the only
free variable that can occur in p and B: p[v/x] and B[v/x] are closed.

Test derivation from expressions in BEXv suffers from the problem of infiniteness. Be-
cause of the infinite branching, elements of acceptance sets turn out to be infinite,
hence difficult to represent in automated algorithms. A first help in deriving test cases
is proposition 4.28, which implies that finite reduced acceptance sets exist (lemma 4.20
and proposition 4.7).

Proposition 4.28
Any B ∈ BEXv

c is image-finite.
2

Although finite reduced acceptance sets exist, the elements of acceptance sets, also
sets, need not be finite. The next example introduces the acceptance division lemma
(lemma 4.30) that provides a handle on how to deal with these infinite sets.

Example 4.29
Let B = i; (f?x; stop 2 g?x; stop) 2 i; (g?x; stop 2 h?x; stop)

A reduced acceptance set C(B) according to proposition 4.18 is

C(B) = { out(B′) | B
ǫ
⇒B′ }

= { out(B), out(f?x; stop 2 g?x; stop), out(g?x; stop 2 h?x; stop) }

Let F = {〈f, v〉 | v ∈ N},
G = {〈g, w〉 | w ∈ N},
H = {〈h, u〉 | u ∈ N},



4.4. Test Derivation with Infinite Branching 99

then C(B) can be written as

C(B) = { F ∪ G ∪ H, F ∪ G, G ∪ H }

A reduced must set can be obtained using Ψo (definition 4.19 and lemma 4.20):

Ψo(C(B)) = { {a, b, c} | a ∈ F ∪ G ∪ H, b ∈ F ∪ G, c ∈ G ∪ H }
= { {a, b, c} | a ∈ F, b ∈ F, c ∈ G }

∪ { {a, b, c} | a ∈ F, b ∈ F, c ∈ H }
∪ { {a, b, c} | a ∈ F, b ∈ G, c ∈ G }
∪ { {a, b, c} | a ∈ F, b ∈ G, c ∈ H }
∪ { {a, b, c} | a ∈ G, b ∈ F, c ∈ G }
∪ { {a, b, c} | a ∈ G, b ∈ F, c ∈ H }
∪ { {a, b, c} | a ∈ G, b ∈ G, c ∈ G }
∪ { {a, b, c} | a ∈ G, b ∈ G, c ∈ H }
∪ { {a, b, c} | a ∈ H, b ∈ F, c ∈ G }
∪ { {a, b, c} | a ∈ H, b ∈ F, c ∈ H }
∪ { {a, b, c} | a ∈ H, b ∈ G, c ∈ G }
∪ { {a, b, c} | a ∈ H, b ∈ G, c ∈ H }

This rather complex expression can be further reduced, using the properties of ⊑, but
such reductions can be performed only on an ad hoc basis. We do not consider such
reductions now, but we want to simplify the expression using the following observation:

{ {a, b, c} | a ∈ F, b ∈ F, c ∈ G } = Ψo({F, F, G})

and analogously for the other sets. Note that {F, F, G} is treated as a multiset. Now
Ψo(C(B)) can be rewritten as follows:

Ψo(C(B)) = Ψo({F, F, G})
∪ Ψo({F, F, H})
∪ Ψo({F, G, G})
∪ Ψo({F, G, H})
∪ Ψo({G, F, G})
∪ Ψo({G, F, H})
∪ Ψo({G, G, G})
∪ Ψo({G, G, H})
∪ Ψo({H, F, G})
∪ Ψo({H, F, H})
∪ Ψo({H, G, G})
∪ Ψo({H, G, H})

=
⋃
{ Ψo(E) | E ∈ Ψo({{F, G, H}, {F, G}, {G, H}})

We see that for the computation of a reduced acceptance set C of B we can consider
each of the sets F , G, and H as a whole, compute Ψo as if these sets were actions, and
then applying the transformation Ψo again to the results of the first step, which are now



100 Chapter 4. Synchronous Testing

sets of sets of actions. Since the sets F , G, and H exactly correspond to the actions
induced by f?x, g?x, and h?x respectively, this in fact means that Ψo can be computed
symbolically on f?x, g?x, and h?x. This is formally expressed in the acceptance division
lemma (lemma 4.30).

2

Lemma 4.30 (Acceptance Division Lemma)
Let C ∈ P(P(L)), D ∈ P(P(P(L))), such that there is a bijection δ : C → D, with

for all A ∈ C :
⋃

δ(A) = A, then

Ψ(C) =
⋃

{ Ψ(E) | E ∈ Ψ(D) }

2

The acceptance division lemma expresses that for the computation of Ψ(C), elements
of the acceptance set C can be divided into subsets: let A1 ∈ C, then A1 is represented
by the union of the elements D′′ ∈ D′

1. The transformation Ψ is applied to C with these
subsets D′′ treated as elements. In the next step Ψ is applied to the sets of elements
formed in the first step (E in the lemma). This means that if we can find a finite
division of each element of an acceptance set, we can compute Ψ(C) in two steps.

C ={{a11 , a12, a13 , . . . },{a21 , a22 , a23, . . . },. . .}

︸ ︷︷ ︸

A1

︸ ︷︷ ︸

A2

= =
⋃

δ(A1)=D′
1

︷ ︸︸ ︷

⋃
δ(A2)=D′

2
︷ ︸︸ ︷

D ={{{d111
, d112

, . . .}, {d121
, d122

, . . .}, . . .},{{d211
, d212

, . . .}, {d221
, d222

, . . .}, . . .},. . .}

︸ ︷︷ ︸

D′′
1

︸ ︷︷ ︸

D′′
2

Reduced versions of the lemma can be derived, where not Ψ(C) is computed but a
reduced must set M ⊑ Ψ(C).

Lemma 4.30 is useful for BEXv, since it can facilitate computation of acceptance sets.
Acceptance sets are in a natural way structured as required by lemma 4.30: they consist
of sets of sets of actions: each element is formed by a finite number of subsets, each
subset being a set {〈g, v〉 | p[v/x]}, corresponding to g?x : p of the syntax. The lemma
expresses that in the computation of Ψ(C), the sets {〈g, v〉 | p[v/x]} can be treated
as a whole. Denoting this set {〈g, v〉 | p[v/x]} by g?x : p, the relation to the previous
picture is as follows:

D ={{{〈g1, v1〉, 〈g1, v2〉, . . .}, {〈g2, w1〉, 〈g2, w2〉, . . .}, . . .},{{〈g3, u1〉, . . .}, . . .},. . .}

︸ ︷︷ ︸

g1?x:p

︸ ︷︷ ︸

g2?y:q



4.4. Test Derivation with Infinite Branching 101

Computing Ψ(C) by applying lemma 4.30 first involves computation of Ψ(D). The
result has the same structure as D, i.e. a set of sets of g?x : p, which is a set of sets of
sets of actions. The next step involves for each E ∈ Ψ(D) computation of Ψ(E). This
set E has a simpler structure: it is a set of g?x : p, i.e. a set of sets of actions. And
since this set is always finite, Ψo can replace Ψ:

Let E = { g1?x1 : p1, g2?x2 : p2, . . . , gn?xn : pn } , then

Ψ(E)
⊒ Ψo(E)
= { { 〈g1, v1〉, 〈g2, v2〉, . . . , 〈gn, vn〉 } | p1[v1/x1], p2[v2/x2], . . . , pn[vn/xn] }

For the derivation of test cases an A ∈ Ψo(E) is required. Such an A is always finite,
and has the form { 〈g1, v1〉, 〈g2, v2〉, . . . , 〈gn, vn〉 }. The corresponding test case is

Σ{a; ta | a ∈ { 〈g1, v1〉, 〈g2, v2〉, . . . , 〈gn, vn〉 } }

which can be written as

g1!v1; t〈g1,v1〉 2 g2!v2; t〈g2,v2〉 2 . . . 2 gn!vn; t〈gn,vn〉 (4.7)

Also the canonical tester can be computed using lemma 4.30 (definition 4.13 and propo-
sition 4.14). In this case a nondeterministic choice over all A ∈ M = Ψo(C) has to be
constructed. Since M itself may be infinite, this implies that a representation must
be defined for such an infinite nondeterministic choice. In fact the notation † defined
in [Doo91] is such a representation. Note that infinite nondeterministic choice implies
that the canonical tester is not image finite. Hence the canonical tester of a behaviour
expression in BEXv cannot be expressed in BEXv.

Finally, compositional rules for the attributes outD(B), stD(B), and D(B) are given in
table 4.2 (without proof). outD(B) is a set of g?x : p, stD(B) depends on the value
of predicates in the behaviour expression, and D(B) gives a set of sets of g?x : p as
required by lemma 4.30 and discussed above.

Subsequent Behaviour of a Test Case

From equation 4.7 it follows that for the subsequent behaviour of test cases it is suf-
ficient to consider a finite number of test cases ta, where ta = choice B after 〈g, v〉 .
Table 4.3 gives compositional rules for choiceD B after 〈g, v〉 , which is analogous to
choiceB B after g in proposition 4.24.

Note that choiceD B after 〈g, v〉 is not easily applicable to the derivation of the
canonical tester. Due to the infinity of M , choiceD B after 〈g, v〉 has to be determined
for infinitely many 〈g, v〉. An expression of the form choice B after g?x : p is needed
to cope with this problem.



102 Chapter 4. Synchronous Testing

B outD(B) stD(B) D(B)

stop ∅ true {∅}

g?x : p;B1 {g?x : p} true {{g?x : p}}

i : p;B1 outD(B1) if p
∅ if not p

not p D(B1) if p
{∅} if not p

B1 2B2 outD(B1)
∪outD(B2)

stD(B1)
and stD(B2)

{outD(B)}
∪ if 6stD(B1) then D(B1)
∪ if 6stD(B2) then D(B2)

Table 4.2: Compositional computation of acceptance sets for BEXv.

B choiceD B after 〈h, v〉

stop stop

g?x : p;B1 i;B1[v/x] if g = h and p[v/x]
stop if g 6= h or not p[v/x]

i : p;B1 choiceD B1 after 〈h, v〉 if p
stop if not p

B1 2B2 choiceD B1 after 〈h, v〉
2 choiceD B2 after 〈h, v〉

Table 4.3: Compositional computation of subsequent behaviour for BEXv.



4.4. Test Derivation with Infinite Branching 103

Example 4.31
A test case for B in example 4.27 is derived in detail:

B = g?x : x < 20; h!x + 2; stop
2 i; g?y : y > 10; h!y; stop

The first step:

outD(B)
= outD(g?x : x < 20; h!x + 2; stop) ∪ outD(i; g?y : y > 10; h!y; stop)
= {g?x : x < 20, g?y : y > 10}

stD(g?x : x < 20; h!x + 2; stop) = true
stD(i; g?y : y > 10; h!y; stop) = stD(i : true; g?y : y > 10; h!y; stop) = false

D(B)
= {outD(B)} ∪ D(i; g?y : y > 10; h!y; stop)
= {outD(B)} ∪ D(g?y : y > 10; h!y; stop)
= {{g?x : x < 20, g?y : y > 10}} ∪ {{g?y : y > 10}}
= {{g?x : x < 20, g?y : y > 10}, {g?y : y > 10}}

For one test case choose E ∈ Ψ(D(B)) and A ∈ Ψo(E):
Ψ(D(B)) = {{g?x : x < 20, g?y : y > 10}, {g?y : y > 10}}, take E = {g?y : y > 10},
and A ∈ Ψo(E) : A = {〈g, 15〉}.

The test case then is: t = g!15; t〈g,15〉,
where t〈g,15〉 is a test case for choice B after 〈g, 15〉 ,
computed via choiceD B after 〈g, 15〉 in table 4.3:

choiceD B after 〈g, 15〉
= choiceD g?x : x < 20; h!x + 2; stop after 〈g, 15〉

2 choiceD i; g?y : y > 10; h!y; stop after 〈g, 15〉
= i; h!15 + 2; stop 2 choiceD g?y : y > 10; h!y; stop after 〈g, 15〉
= i; h!17; stop 2 i; h!15; stop

Now repeat the whole test derivation procedure for

B′ = i; h!17; stop 2 i; h!15; stop

outD(B′) = {h!17, h!15}
stB(i; h!17; stop) = stB(i; h!15; stop) = false

D(B)
= outD(B′) ∪ outB(i; h!17; stop) ∪ outB(i; h!15; stop)
= {{h!17, h!15}, {h!17}, {h!15}}

Take E ∈ Ψ(D(B)), where Ψ(D(B)) = {{h!17, h!15}} : E = {h!17, h!15},
and A ∈ Ψo(E) : A = {〈h, 15〉, 〈h, 17〉}.

The test case t〈g,15〉 is:



104 Chapter 4. Synchronous Testing

Σ{a; ta | a ∈ {〈h, 15〉, 〈h, 17〉} }
= 〈h, 15〉; t〈h,15〉 2 〈h, 17〉; t〈h,17〉

= h!15; t〈h,15〉 2 h!17; t〈h,17〉

where t〈h,15〉 is a test case for choice B′ after 〈h, 15〉 , and t〈h,17〉 is a test case for
choice B′ after 〈h, 17〉 . It is easy to check that both expressions are equal to i; stop,
with test case stop.

Taking the parts together a test case for B is:

t = g!15; ( h!15; stop 2 h!17; stop )

2

4.5 Concluding Remarks

We have worked on some of the problems of test derivation for the implementation
relation conf, first from labelled transition systems, then from two simple languages
with labelled transition system semantics. A main issue was representation of infinite
choice in a finite manner to obtain implementable algorithms.

The algorithms for the derivation of test cases do not define functions, in the sense
that choices within the algorithms result in different test cases. No choice is prescribed
by the algorithms; they only guarantee soundness of the derived test case for each
choice. Making a particular choice is a problem of test case selection; it could be called
horizontal test selection. Test selection is studied in chapter 6.

Although the languages for behaviour expressions used in this chapter are rather simple
they have many features also appearing in more complex languages with labelled tran-
sition system semantics, e.g. LOTOS [BB87, ISO89b]. Aspects not covered by BEX or
BEXv are recursion and image-infiniteness.

It was suggested to approach recursion, i.e. infinite behaviour, using the approximation
induction principle: infinite behaviour is approximated by finite behaviour of arbitrary
length. For conformance testing this seems reasonable: testing can only be done for a
restricted period of time, hence all practical test cases are finite.

How long to test a recursive process with infinite behaviour for conformance is a question
of test selection too. We refer to it as vertical test selection. An item of interest is when
testing for infinite, recursive behaviour becomes reliability testing, which is defined as
testing whether a correct implementation continues to operate correctly after a certain
period of time (section 1.1.1).

Image-infiniteness poses more problems in test derivation. Image-infiniteness means
that S after σ is not finite, in particular that S after ǫ is not finite. One way to
introduce it in a language is by allowing internal actions to be combined with variables:

i?x : p; B (4.8)



4.5. Concluding Remarks 105

with semantics
Σ { i; B[v/x] | p[v/x] } (4.9)

For each possible value v of x: i?x : p; B τ−→B[v/x]. If there are infinitely many values
v it follows that the acceptance set C is infinite, contrary to BEXv, where only elements
of acceptance sets can be infinite and acceptance sets themselves are always finite. Test
derivation for image-infinite processes needs further study.

r
r
r

r�
��

@
@@

i?X : X ⊆ N

b?x : x 6∈ X

CS

a?x : x ∈ X

r
r
r r�

��@
@@

b!x

S

a!x

i?x

r
rr���@

@@

IZ

a?x : x ∈ Z b?x : x 6∈ Z

Figure 4.5: Canonical tester for image-infinite process.

In section 4.4 it was noticed that the canonical tester of an expression in BEXv cannot
be expressed in BEXv: the canonical tester is image-infinite, while expressions in BEXv

are not. It would be interesting to investigate whether canonical testers for processes in
a language that is extended with image-infiniteness according to (4.8), can be expressed
in that language.

Consider S and CS represented pictorially in figure 4.5:

S = i?x; ( a!x; stop 2 b!x; stop )

It can be expressed in BEXv extended with (4.8). CS is a canonical tester, and could
be expressed as

CS = i?X : X ⊆ N; ( a?x : x ∈ X; stop 2 b?x : x 6∈ X; stop )

but this cannot be expressed in BEXv with (4.8), since variables with values in P(N)
are not allowed. CS has uncountably many τ -transitions, while expressions in BEXv

with (4.8) only have countably many τ -transitions.

Now consider the class of erroneous implementations IZ with Z ⊂ N (figure 4.5). There
are uncountably many of such erroneous implementations. They are detected in the
canonical tester by the τ -branch with X = N\Z. Moreover, this is the only τ -branch



106 Chapter 4. Synchronous Testing

that can detect IZ . It follows that there must be uncountably many τ -branches in the
canonical tester, and that the canonical tester cannot be expressed in BEXv with (4.8).

A possibility of circumventing image-infiniteness for the purpose of conformance testing
was already discussed in section 2.2.9 (item 2): it can be required that the PIXIT
supplies sufficient information to remove image-infiniteness from a specification for the
purpose of test derivation.



Chapter 5

Asynchronous Testing

5.1 Introduction

There are different ways of applying tests to an implementation depending on the
test architecture. An important aspect is the nature of the communication between
the tester and the implementation. Different ways of interaction between tester and
implementation are possible:

◦ the tester and the protocol implementation can be located in the same computer
system. Interactions are implemented by e.g. procedure calls (figure 5.1(a));

◦ the tester and the protocol implementation can be located in the same computer
system and interactions are implemented by putting messages in a buffer (fig-
ure 5.1(b));

◦ the tester is located in another computer system than the protocol implementation,
e.g. when the remote test method is used (section 1.3.3, [ISO91a]): interactions
take place via the underlying service connecting the tester and the implementation
(figure 5.1(c)).

The way the tester is connected to the implementation influences the kind of obser-
vations that a tester can make of the implementation. Intuitively, the possibility of
making distinct observations decreases when the ‘distance’ between the tester and the
implementation increases. In this chapter we investigate the influence of the kind of
communication between the tester and the implementation on testing and test gen-
eration. In particular the difference between synchronous communication and asyn-
chronous communication is investigated.

Synchronous communication is characterized by the fact that the communicating part-
ners are involved in an interaction at the same time. An example of this is shaking
hands. In synchronous communication there is no real notion of sending and receiv-
ing, only of interaction. In the first example above the communication is synchronous
(figure 5.1(a), see also figure 2.1).

107



108 Chapter 5. Asynchronous Testing

IUT T

IUT

underlying service

T

(a) (b)

(c)

TIUT

Figure 5.1: Interactions between tester and implementation.



5.1. Introduction 109

In asynchronous communication the partners perceive the occurrence of communication
at different moments in time. The partner that starts the communication is called the
sender, the other the receiver. The system only communicates indirectly via some
kind of medium with its environment. An example is writing a letter: the moments
of writing and reading do not coincide; the postal service constitutes the medium.
In section 2.2.6 a test interface or test context was introduced to model the indirect
communication between the implementation and the tester. The test context hides
the implementation from its environment. The second and third example above are
examples of asynchronous communication (figures 5.1(b) and 5.1(c), cf. figure 2.2).

The theory of testing, conforming implementations, and test generation for labelled
transition systems in chapters 3 and 4 was developed assuming synchronous communi-
cation between tester and implementation. Synchronous communication is formalized
by the synchronous parallel operator ‖ on labelled transition systems. Testing equiv-
alence ≈te is based on the notion of observation: two labelled transition systems are
testing equivalent if there is no (synchronously communicating) external observer that
can tell them apart. Choosing a suitable formalization of this intuition of equivalence
was shown to lead to the intensional characterization of ≈te in theorem 3.6.

This chapter studies asynchronous communication in the realm of labelled transition
systems. Asynchronous communication is simulated by synchronous communication by
explicitly introducing a context in the labelled transition system. The context discussed
in this chapter consists of a pair of queues, one for input and one for output. The queue
context is introduced using a special queue operator on labelled transition systems. Our
goal is to explore testing equivalence of specifications in such queue contexts analogous
to the approach in chapter 3. We investigate when two specifications that communicate
with their environment via queues cannot be distinguished by any environment. Also
implementation relations that express correctness of implementations with respect to
their specifications, are investigated. It will be shown that test cases generated using
the algorithms for synchronous communication (chapter 4) cannot be used for queue
contexts. Alternative methods for generating test cases for the queue implementation
relations are presented. The relation between the newly defined queue relations and
synchronous testing equivalence and implementation relations is given.

Apart from modelling an explicit test context, the theory of queue contexts is applicable
to formal languages that have queues built in in their formalism, like the standardized
Formal Description Techniques Estelle [ISO89a] and SDL [CCI88], and the standardized
test notation TTCN [ISO91a, part 3]. Such formalisms are usually based on finite state
machines, communicating via queues. Sending is modelled by putting a message in the
input queue of the receiver. Receiving corresponds to taking the first message from
the input queue. To apply the labelled transition system based testing theory to these
formalisms, or to relate test cases derived from such formalisms to test cases derived
from synchronous formalisms, it is necessary to relate their models of communication.
The queue model presented in this chapter can serve as a starting point.

The next section starts with an intuitive sketch of the problems encountered when test
cases intended for synchronous testing are used for asynchronous testing. In section 5.3



110 Chapter 5. Asynchronous Testing

asynchronous communication is formalized by defining the queue operator. Queue
equivalence is defined as the finest relation that can be observed if the systems under
test communicate with their environment via unbounded queues. The nature of queue
equivalence is investigated and an intensional characterization is given in section 5.4.
Section 5.5 explores the traces of queue contexts; section 5.6 explores their deadlock
behaviour. Implementation relations for queue contexts are considered in section 5.7.
Sections 5.8 and 5.9 study test derivation from specifications for asynchronous testing.
Finally, some open problems and future work are identified in section 5.10.

5.2 Synchronous versus Asynchronous Testing

Synchronous communication means that interactions between the tester and the im-
plementation under test can only occur if both are prepared to participate in that
interaction; otherwise nothing can happen. Formally this means that if the tester T
performs an observable action, then also the implementation I must perform the same
observable action, and vice versa. This was formalized in chapter 3 using the synchro-
nization operator ‖ on labelled transition systems.

r
r
r r

r
r
r r
r

r
r rr
r r

�
��

@
@@

�
��@

@@ HHH
���

s1

s0

s2 s3

S3S2S1

shil

liq choc

shil

choc
choc

τ

shilshil

liq
liq

τ

Figure 5.2: Candy machines.

Example 5.1
Figure 5.2 gives examples of labelled transition systems modelling candy machines.
Candy machines supply candy via drawers if money is inserted. If the right coins are
inserted, drawers will be unlocked so that candy can be obtained. The communication
between the machine and a user is synchronous: the action of obtaining candy only
occurs if both the drawer is unlocked, and the user pulls a drawer.

Consider the systems of figure 5.2 as implementations, synchronously tested using the
test cases of figure 5.3. The test cases are given in DLTS (section 3.4.3, definition 3.25).

If S1 is tested with T1, the result is that S1 passesD T1, since the only test run is

t0‖s0
shil−−→ t1 ‖s1

liq−−→ t2‖s2 , t2 ‖s2

a

6⇒ for all a ∈ L , and v(t2) = pass



5.2. Synchronous versus Asynchronous Testing 111

If S2 is tested with T1 we have the following test runs:

T1‖S2

shil ·liq
⇒ t2 ‖S ′

2, such that t2‖S ′
2

a

6⇒ for all a ∈ L , and v(t2) = pass

T1‖S2
shil
⇒ t1 ‖S ′′

2 , such that t1 ‖S ′
2

a

6⇒ for all a ∈ L , and v(t1) = fail

hence S2 /passesD T1.

Using T1 the implementations S1 and S2 can be distinguished. The same experi-
ment applied to S2 and S3 will show that S2 and S3 cannot be distinguished by T1:
S2, S3 /passesD T1. In fact there is no test case that can distinguish between S2 and S3:
they are testing equivalent, S2 ≈te S3.

Now consider S1 as a specification. T1 can be obtained using one of the algorithms in
chapter 4: it is a test case derived from S1 for conf-testing. Any correct implementation
of S1 must also pass T1. S2 /passesD T1, hence S2 is not a correct implementation of
S1: S2 /conf S1. A complete conf-test suite for S1 is {T1, T2}. It is easy to check that
also S3 /passesD {T1, T2}.

2

r
r

r

r
r
r r

r
rr @

@@

�
��

t0

t1

t2

fail

fail

pass

fail

fail

pass

fail

fail

pass pass

shil

liq

shil

choc

shil

choc

T1 T2 T3

liq

Figure 5.3: Test cases for candy machines.

If the tester and the implementation communicate via a test context, e.g. if they are
situated in different computer systems as in the remote test method (figure 5.1(c)), the
communication is asynchronous. The occurrence of communication is perceived by the
communicating partners at different moments in time.

Example 5.2
Consider again the candy machines (figure 5.2), but now in an asynchronous testing en-
vironment. The candy machine cannot be accessed directly; it is connected to two tubes,
one to the money slot and one that collects candy from an unlocked drawer. The (re-
mote) tester only has access to the other ends of the tubes. Both tubes have unbounded
capacity and pass their contents to the other end in a reliable and order-preserving way.
Whenever the machine has a choice between actions it chooses nondeterministically, ei-
ther taking money from the money tube (money should be available then) or putting
candy from an unlocked drawer into the candy tube. The pair of tubes constitutes a
test context via which the candy machine is tested. Insertion of a shilling is input for
the candy machine; supplying candy is output, indicated by a bar: choc and liq .



112 Chapter 5. Asynchronous Testing

In this setup the control that the tester has over the machine has diminished consid-
erably, hence also the distinctions that can be observed. Consider again the tests of
example 5.1: S1 is tested with T1. The tester puts a shilling into the money tube, which
is accepted by S1. S1 unlocks both the liquorice-drawer and the chocolate-drawer and
chooses nondeterministically which one to put into the candy tube. The tester receives
either liquorice or chocolate. If the tester receives liquorice the test is passed, other-
wise it fails. Hence, S1 does not pass T1 (note that it did using synchronous testing).
Analogous reasoning shows that S2 does not pass T1. The same thing happens with
test cases T2 and T3: S1 and S2 both fail T2 and they both pass T3. In fact no test
case can be found that distinguishes between S1 and S2: they are testing equivalent for
asynchronous testing, but not for synchronous testing.

Also, synchronous test cases cannot be used for asynchronous testing. Consider again
S1 as a specification. Since S1 does not pass T1, T1 is not in any asynchronous test
suite derived from S1. If it were, S1 itself would not be correct; the corresponding
implementation relation would not be reflexive. We saw in example 5.1 that T1 can be
in a synchronous test suite of S1.

2

Example 5.2 shows that systems can be testing equivalent for asynchronous testing,
while they are not testing equivalent for synchronous testing. Moreover, test cases
used for synchronous testing (e.g. for conf) can produce wrong results when used for
asynchronous testing. Other notions of equivalence and conformance, and another way
of generating test cases are needed to cope with asynchronous testing. To do this we
first need to formalize asynchronous communication, i.e. express it formally in terms of
labelled transition systems. This is done in the next section.

5.3 Queue Contexts

Asynchronous communication between two systems, e.g. between an implementation
and a tester, can be described by introducing a context. We study a special kind of
context, a queue context, and we investigate testing equivalence of queue contexts. First,
a context relation is defined, then a family of queue operators is introduced to model
queue contexts, and then these definitions are combined to define queue equivalence as
testing equivalence in a queue context.

Definition 5.3
The context relation RC ⊆ LTS × LTS with respect to a context C[ · ] : LTS → LTS
and a relation R ⊆ LTS × LTS is defined by

S1 RC S2 =def C[S1] R C[S2]

2

A context relation relates specifications by relating the behaviour of a given context
containing these specifications. We restrict ourselves to contexts consisting of two



5.3. Queue Contexts 113

environment

context

system
S T

C qU

q
I

Figure 5.4: Asynchronous communication via unbounded queues.

queues, one queue for input of messages from the environment to the specification, and
one queue for output of messages from the specification to the environment. This is
depicted in figure 5.4. The system S in figure 5.4 communicates asynchronously with
its test environment T by means of an input queue qI and an output queue qU . S can
put messages in qU and receive messages from qI ; T can put messages in qI and receive
messages from qU . qI and qU are assumed to be unbounded: they always contain a
finite, but arbitrarily large number of messages. Putting messages into the queues and
receiving messages from the queues is modelled by events, i.e. occurrences of actions
in the label set L. We assume that we can distinguish between input actions LI and
output actions LU : L = LI ∪ LU , and LI ∩ LU = ∅. We use the convention that
a, b, c, . . . ∈ LI , and z, y, x, . . . ∈ LU .

Definition 5.4
A queue operator is a unary operator [σu≪ · ≪σi

] : LTS → LTS, where σi ∈ L∗
I and

σu ∈ L∗
U . Let S ∈ LTS, then [σu≪S≪σi

] ∈ LTS is defined by the axioms A1Q and A2Q

and the inference rules I1Q, I2Q and I3Q:

[σu≪S≪σi
] a−→ [σu≪S≪σi·a] , a ∈ LI (A1Q)

[x·σu≪S≪σi
] x−→ [σu≪S≪σi

] , x ∈ LU (A2Q)

S τ−→S ′

[σu≪S≪σi
] τ−→ [σu≪S ′

≪σi
]

(I1Q)

S a−→S ′

[σu≪S≪a·σi
] τ−→ [σu≪S ′

≪σi
]
, a ∈ LI (I2Q)

S x−→S ′

[σu≪S≪σi
] τ−→ [σu·x≪S ′

≪σi
]
, x ∈ LU (I3Q)

A process Q is a queue context if it has the form [σu≪S≪σi
] for some S, σi, σu. The

initial queue context containing a system S is denoted by QS. It is defined as QS =def



114 Chapter 5. Asynchronous Testing

[ǫ≪S≪ǫ].
2

Example 5.5
Consider the labelled transition system S, with LI = {a, b} and LU = {x, y}. The view
of an asynchronously communicating observer on S can be expressed as QS = [ǫ≪S≪ǫ].
A possible sequence of transitions of QS is:

r
r
r

x

a

s2

s1

s0S:
QS = [ǫ≪s0≪ǫ]

a−→ (∗ A1Q ∗)

[ǫ≪s0≪a]
b−→ (∗ A1Q ∗)

[ǫ≪s0≪a·b]
τ−→ (∗ I2Q ∗)

[ǫ≪s1≪b]
τ−→ (∗ I3Q ∗)

[x≪s2≪b]
x−→ (∗ A2Q ∗)

[ǫ≪s2≪b]

With only observable actions: [ǫ≪s0≪ǫ]
a·b·x

⇒ [ǫ≪s2≪b] Note that a·b·x is not a trace
of S. Apparently [ǫ≪S≪ǫ] can perform traces that S cannot perform.

2

Example 5.6
A formalization of example 5.2 can now be given:

t0‖ [ǫ≪s0≪ǫ]
shil−−→ t1 ‖ [ǫ≪s0≪shil ]

τ−→ t1 ‖ [ǫ≪s1≪ǫ]
τ−→ t1 ‖ [liq≪s2≪ǫ]

liq−−→ t2 ‖ [ǫ≪s2≪ǫ] ,

with t2 ‖ [ǫ≪s2≪ǫ]
a

6⇒ for all a ∈ L , and v(t2) = pass

and
t0‖ [ǫ≪s0≪ǫ]

shil−−→ t1 ‖ [ǫ≪s0≪shil ]
τ−→ t1 ‖ [ǫ≪s1≪ǫ]

τ−→ t1 ‖ [choc≪s3≪ǫ] ,

with t1 ‖ [choc≪s3≪ǫ]
a

6⇒ for all a ∈ L , and v(t1) = fail

hence QS1 /passesD T1. An analogous derivation can be given for QS2 /passesD T1.

QS1 passesD T3:

T3 ‖ [ǫ≪S1≪ǫ]
shil ·liq

⇒T ′
3 ‖ [ǫ≪s2≪ǫ]

a

6⇒ for all a ∈ L , and v(T ′
3) = pass

T3 ‖ [ǫ≪S1≪ǫ]
shil ·choc

⇒T ′′
3 ‖ [ǫ≪s3≪ǫ]

a

6⇒ for all a ∈ L , and v(T ′′
3 ) = pass

2

The queue context [ǫ≪S≪ǫ] models the asynchronous communication between a system
S and its environment. The queue context itself is a labelled transition system that
communicates synchronously with its environment. This means that observing S asyn-
chronously corresponds to observing [ǫ≪S≪ǫ] synchronously. Hence, we should apply
the theory of synchronous communication presented in chapter 3 to [ǫ≪S≪ǫ], which im-
plies that the finest distinctions that can be made between queue contexts are given by
testing equivalence ≈te . The equivalence on the specifications contained in the queue
contexts induced in this way is called queue equivalence: it is the context equivalence
with respect to [ǫ≪ · ≪ǫ] and ≈te .



5.3. Queue Contexts 115

Definition 5.7
Queue equivalence ≈Q ⊆ LTS × LTS is defined by

S1 ≈Q S2 =def [ǫ≪S1≪ǫ] ≈te [ǫ≪S2≪ǫ]

2

Our objective is to explore the nature of ≈Q and to relate it to other equivalences on
LTS. Before starting with a formal treatment of queue equivalence in the next sections,
we study a few examples to get some intuition about the kind of distinctions that can
be made and that cannot be made.

The first thing to observe is that a queue context always yields a labelled transition
system with infinite behaviour (if LI 6= ∅), because it can always accept any number
of input actions, due to axiom A1Q. From this observation we can also conclude that
systems which do not produce any outputs can never be distinguished.

r
r

r

r
r
r

r
r r

r
r
r r

r
r

r
r r
r r
r
r
r
r

r
r

�
��@

@@

�
��@

@@ �
��@

@@

�
��@

@@
a

y

b

U2S1 ≈Q

τ

a

x

6≈Q

a

y

a

y

T2

x

τ

b

yx

ab

S2

x τ

τ

T1 ≈Q U1

Figure 5.5: Examples for asynchronous observation.

Example 5.8
Consider figure 5.5. QS1 and QS2 cannot be distinguished by any environment. Appar-
ently, a system must produce output actions in order to make any relevant observations.
Also the processes QT1 and QT2 cannot be distinguished. An output is nondeterminis-
tically generated by the system. No environment can have any influence on that. The
reason is inference rule I3Q which introduces a τ -step preceding any output action. QU1

and QU2 can be distinguished, e.g. by an environment trying to do a ·x. With QU1 it
will always succeed; with QU2 it may deadlock after having done a. This implies that
nondeterministic choice between input actions can be observed, whereas QT1 and QT2

show that it cannot be observed for output actions.
2

The first example shows that queue equivalence does not imply trace equivalence ≈tr,
and thus not testing equivalence ≈te either. The second example shows that also in the
case that the traces are equal ≈Q does not imply ≈te . The third example shows that
≈Q is not implied by trace equivalence either.

Example 5.9
Consider figure 5.6. A system S is given, and (a testing equivalent version of) its



116 Chapter 5. Asynchronous Testing

r
r
r
r
r

y

b

x

a

r r
r r r r
r r r
r r
r

m m
m mm m
m m

m

- -

- -6 6

6 6

-

a,b a,b

a,b a,b
a,b a,b

a,b a,b

a,b

�
�
�
������

A
A
A

HHHHHH

@
@

@�
�

�

y y

b a x x

x a b

ab

S QS

r
r
r
r
r

y

x

b

a

S ′

r
r
r
r
r

y

b

x

a

r
r
r@@

@

y

x

b

S ′′

Figure 5.6: An example of a queue context.

queue context QS, where τ -steps have been removed. First we see that QS has infinite
behaviour: e.g. a·x·a·a·a . . . is a trace of QS. Secondly, we see that a·x·b·y is a trace of S
and of QS. a·b·x·y is a trace of QS but not of S. Apparently we can ‘shift’ input actions
to the front of the trace to get a trace of QS that is not a trace of S. The reason for
this phenomenon is that because of axiom A1Q we can do input actions ‘in advance’,
which remain in the queue, before doing the output actions. While QS is doing a·b·x·y,
S is doing a·x·b·y. Something similar can be observed in some operating systems which
allow impatient users to type in their commands in advance while the program is still
busy working. The other way around, i.e. shifting input actions to the end, does not
yield a trace of QS: x·a·b·y, nor a·x·y ·b is a trace of QS.

2

Example 5.10
One might suspect that shifting input actions to the front yields queue equivalent
specifications. This is only the case if the original trace is not removed: S ′ is not queue
equivalent to S (try the experiment a·x), but S ′′ is (figure 5.6).

2

5.4 Queue Equivalence

Queue equivalence ≈Q was defined (definition 5.7) as testing equivalence ≈te (theo-
rem 3.6) in a queue context (definition 5.4):

S1 ≈Q S2

iff QS1 ≈te QS2

iff ∀σ ∈ L∗, ∀A ⊆ L : QS1 after σ must A iff QS2 after σ must A
(5.1)

The specific properties of queue contexts that came up in examples 5.8, 5.9 and 5.10
allow us to derive simpler characterizations of ≈Q. These properties are elaborated
leading to theorem 5.14 and corollary 5.15.



5.4. Queue Equivalence 117

First consider the input actions of a queue context Q. According to axiom A1Q (defini-
tion 5.4) there is no restriction in performing an input action a ∈ LI : any queue context
can always perform any input action. Consequently, Q after σ must A always holds,
if A contains an input action:

Proposition 5.11

1. Any queue context Q can always do any sequence of input actions: ∀σi ∈ L∗
I :

Q
σi

⇒

2. For a queue context Q, σ ∈ L∗, A ⊆ L, and A ∩ LI 6= ∅, Q after σ must A
holds.

2

Now consider the output actions. In example 5.8 we saw that output actions of a queue
context always occur nondeterministically. This is due to the internal τ -step which
occurs when the system S puts an output action x into the output queue. After this
τ -step the output action x is contained in the output queue, and the environment has to
remove x before it can perform any subsequent output action. This can be expressed as

follows: if for some Q′: Q
σ
⇒Q′ x−→ , then for all y 6= x: Q

σ
⇒Q′

y

6⇒ , which means:
Q after σ refuses LU\{x} :

Proposition 5.12

If Q
σ·x
⇒ then Q after σ refuses LU\{x} .

2

The nondeterministic occurrence of output actions corresponds to the intuition of send-
ing and receiving: the environment can receive the actions sent by S, but it does not
have any direct influence on which actions will be sent. The specification of S deter-
mines which output actions may be produced. It may also occur that no output actions
are produced at all: Q after σ refuses LU ; the system is in an output deadlock. This
discussion suggests that the complete behaviour of a queue context is determined by
the output actions that may occur after a certain trace, with the possibility that no
output action occurs. Theorem 5.14 shows that this is correct.

Definition 5.13

1. the output function outputsS : L∗ → P(LU ), is defined by

outputsS(σ) =def {x ∈ LU | QS

σ·x
⇒}

2. the output deadlock predicate δS over L∗, is defined by

δS(σ) =def QS after σ refuses LU

The traces leading to output deadlock are denoted by

δ-traces(S) =def {σ ∈ L∗ | δS(σ)}



118 Chapter 5. Asynchronous Testing

3. the observation function OS : L∗ → P(LU ∪ {δ}), δ 6∈ L, is defined by

OS(σ) =def

{

outputsS(σ) if ¬δS(σ)
outputsS(σ) ∪ {δ} if δS(σ)

2

The observation function OS(σ) gives all output actions that may occur after σ. The
special symbol δ 6∈ L is used to indicate that an output deadlock may occur after σ.
It is necessary in order to distinguish between the possibility of QS not being able to
produce any output after σ (δ ∈ OS(σ)), and QS not being able to do σ (σ 6∈ traces(QS)
iff OS(σ) = ∅).

Theorem 5.14

S1 ≈Q S2 iff ∀σ ∈ L∗ : OS1(σ) = OS2(σ)

2

Theorem 5.14 states that two processes are queue equivalent if and only if their obser-
vations after any trace of actions are equal, where an observation is the occurrence of
an output action, or the observation that the output queue is empty. Theorem 5.14 can
be rewritten, using the definition of OS(σ) and proposition 5.11.1, to equality of two
sets of traces: the normal traces of QS, and the traces of QS that lead to an output
deadlock. These traces were defined as the δ-traces of S.

Corollary 5.15

S1 ≈Q S2 iff traces(QS1) = traces(QS2) and δ-traces(S1) = δ-traces(S2)

2

Example 5.16
Consider again figure 5.5. For S1 and S2, for all σi ∈ L∗

I : OS1(σi) = OS1(σi) = {δ},
while for all σ 6∈ L∗

I : OS1(σ) = OS1(σ) = ∅. OT1(a) = OT2(a) = {x, y}, OT1(ǫ) =
OT2(ǫ) = OT1(a ·x) = OT2(a ·x) = {δ}. The processes U1 and U2 are not equivalent:
OU1(a) = {x} 6= {x, δ} = OU2(a).

2

Processes modulo queue equivalence ≈Q are completely characterized by linear struc-
tures (i.e. traces), as opposed to the must sets (or acceptance sets, or failure sets) nec-
essary to characterize processes modulo testing equivalence ≈te (cf. [BKPR91]: ‘The
failure of failures in a paradigm for asynchronous communication’). This characteri-
zation seems easy and straightforward, however, for other than purely mathematical
purposes it has a severe drawback: traces(QS) and δ-traces(S) are infinite for every
process S (if LI 6= ∅). The next sections study possibilities of reducing the sizes of the
sets traces(QS) and δ-traces(S) in order to obtain a finite representation of processes
modulo ≈Q, at least for processes with finite behaviour.



5.5. Traces of Queue Contexts 119

5.5 Traces of Queue Contexts

We consider the relation between traces of a process S and its queue context QS . In
example 5.9 (section 5.3) it was already shown that traces(S) and traces(QS) are not
equal. Sometimes actions can be shifted with respect to each other. The exact nature
of this reordering of actions is studied here.

The relation @ (‘ape’) is introduced to describe this reordering. If σ1@ σ2 (σ1 is aped
by σ2), then σ2 is obtained from σ1 by a combination of shifting input actions to the
front and adding inputs at the end of σ1. This shifting of input actions corresponds
to QS doing input actions ‘in advance’: they stay in the input queue until they are
consumed by S. We can also say that an observer of QS can leave the output actions
produced by S in the output queue, thus shifting output actions to the end of the trace
that was performed by S. Adding input actions at the end can be explained since QS

can always do input actions. The operation \\ is introduced to produce the sequence
of input actions that was added to σ1.

We show that @ precisely characterizes the relation between traces of S and of QS.
This is done in corollary 5.23, which is a consequence of propositions 5.20 and 5.22.

The relation @ between σ1 and σ2 holds, if the outputs of σ1 and σ2 are equal, the
inputs of σ1 are a prefix of the inputs of σ2, and inputs that precede certain outputs in
σ1, precede the same outputs in σ2:

Definition 5.17

1. The relation @ ⊆ L∗ × L∗ is defined as the smallest relation such that:

◦ if σ1, σ2 ∈ L∗
I , then σ1@ σ2 =def σ1 � σ2

◦ if σ1 = ρ1·x1·σ
′
1, σ2 = ρ2·x2·σ

′
2, with ρ1, ρ2 ∈ L∗

I , x1, x2 ∈ LU , and σ′
1, σ

′
2 ∈ L∗,

then σ1@ σ2 =def ρ1 � ρ2 and x1 = x2 and σ′
1@ (ρ2\ρ1)·σ

′
2

2. If σ1@ σ2, then the operation \\ is defined by

◦ if σ1, σ2 ∈ L∗
I , then σ2\\σ1 =def σ2\σ1

◦ if σ1 = ρ1·x1·σ
′
1, σ2 = ρ2·x2·σ

′
2, with ρ1, ρ2 ∈ L∗

I , x1, x2 ∈ LU , and σ′
1, σ

′
2 ∈ L∗,

then σ2\\σ1 =def ((ρ2\ρ1)·σ
′
2)\\σ

′
1

Note that \\ is well-defined, since σ1@ σ2 implies ρ1 � ρ2 and σ′
1@ (ρ2\ρ1)·σ

′
2. 2

Proposition 5.18
Let σ, σ1, σ2 ∈ L∗:

1. σ1 @ σ2 implies σ1⌈LU = σ2⌈LU

2. σ1 @ σ2 implies σ1⌈LI � σ2⌈LI

3. σ⌈LU @ σ

4. σ2\\σ1 = (σ2⌈LI)\(σ1⌈LI) 2



120 Chapter 5. Asynchronous Testing

Another way of expressing the relation @ is by identifying the causal relations between
occurrences of actions in traces: an occurrence of an action e2 causally depends on e1 if
it is necessary that e1 occurs before e2 can occur [Lan92]. σ1@ σ2 if the following causal
dependencies among the occurrences of actions in σ1 are preserved in σ2:

◦ causal dependencies of input actions on previous input actions;

◦ causal dependencies of output actions on previous output actions;

◦ causal dependencies of output actions on previous input actions.

The causal dependencies of input actions on output actions in σ1 need not be preserved.

Example 5.19
x·a @ x·a·b·a (adding inputs at the end), x·a·b·a\\x·a = b·a, (b·a was added to x·a).
x ·a @ a ·x (shifting inputs to the front), a ·x\\x ·a = ǫ (nothing was added to x ·a).
x·a @ a·b·x (a combination of addition and shifting), a·b·x\\x·a = b.

Not x·a @ x·a·y (adding outputs is not allowed), not a·x @ x·a (shifting inputs to the
end is not allowed), nor x·a @ x·b (removing actions is not allowed).

2

The relation @ is a partial order. Moreover, it is well-founded: there is no infinite
descending sequence of traces (appendix A). Intuitively this can be seen as follows: let
σ′@ σ, then σ′ is obtained from σ by shifting input actions to the end and/or removing
input actions from the end of σ. This process of shifting and removing ends after a finite
number of steps when only output actions are left: σ⌈LU . In this way every descending
sequence ends in a trace consisting of only output actions (see also proposition 5.18).

Proposition 5.20
〈L∗, @ 〉 is a well-founded poset.

2

HHH

cc

HHH

bb

A
A
AA

jjj
aaaa

cc

@@J
J
J

.......

.......

.......

.......

.......

.......

.......

.......

.......
.......

.......

.......
.......

.......
.......

ǫ a a·a a·a·a a·a·a·a

x x·a x·a·a x·a·a·a x·a·a·a·a

a·x a·x·a a·x·a·a

a·a·x

x·x x·x·a x·x·a·a x·x·a·a·a x·x·a·a·a·a

x·a·x x·a·x·a x·a·x·a·a

x·a·a·x

a·x·x a·x·x·a

Figure 5.7: @ as partial order over {a, x}∗



5.5. Traces of Queue Contexts 121

Example 5.21
Consider the order diagram of 〈L∗, @〉 with LI = {a} and LU = {x} (figure 5.7).
The order consists of unrelated sub-orders, with ǫ, x, x ·x, . . ., as minimal elements:
min@(L∗) = L∗

U .
2

Now the relation between transitions of a labelled transition system S and its queue
context QS is given in proposition 5.22. Using this proposition corollary 5.23 shows
that @ captures exactly the relation between traces of S and traces of QS.

Proposition 5.22

1. If σ1@ σ2 and S
σ1
⇒S ′ then [ǫ≪S≪ǫ]

σ2
⇒ [ǫ≪S ′

≪σ2\\σ1
]

2. If [ǫ≪S≪ǫ]
σ2
⇒ [ǫ≪S ′

≪σr
] then ∃σ1 : S

σ1
⇒S ′, σ1@ σ2, and σr = σ2\\σ1

3. QS

σ
⇒ iff ∃S ′, σ′

i, σ
′
u : [ǫ≪S≪ǫ]

σ
⇒ [σ′

u≪S ′
≪σ′

i
]

iff ∃S ′′, σ′′
i : [ǫ≪S≪ǫ]

σ
⇒ [ǫ≪S ′′

≪σ′′

i
]

2

Corollary 5.23

1. σ1 @ σ2 and σ1 ∈ traces(S) imply σ2 ∈ traces(QS)

2. σ1 @ σ2 and σ1 ∈ traces(QS) imply σ2 ∈ traces(QS)

3. σ2 ∈ traces(QS) implies ∃σ1 ∈ traces(S) : σ1 @ σ2
2

The trace σ1 in corollary 5.23.3 is not unique: it can occur that two traces σ′
1 and σ1

with σ′
1@ σ1 are both traces of S. If we observe the trace σ2 of QS, there is no way to

decide whether σ2 is a consequence of S performing σ′
1 or σ1. We can remove σ1 from

the traces of S without changing the traces of QS.

Corollary 5.23.2 expresses that traces(QS) is right-closed with respect to @:
traces(QS) = traces(QS). Together with the well-foundedness of 〈L∗, @〉 (proposi-
tion 5.20) it follows that proposition A.2 is applicable: traces(QS) can be represented
by its minimal elements. These minimal elements are called the tracks of S.

Corollary 5.23.1 and 5.23.3 express that traces(QS) is equal to the right-closure of
traces(S). Using proposition A.1 it follows that the minimal elements of traces(S) and
of traces(QS) are equal. So using tracks traces(QS) can be represented by a set, whose
size does not exceed that of traces(S). This means that for finite traces(S) we have a
finite representation of traces(QS).

Definition 5.24
tracks(S) =def min@(traces(S))

2

Proposition 5.25

1. tracks(S) ⊆ traces(S) ⊆ traces(QS) ⊆ L∗

2. traces(QS) = traces(S) = tracks(S)



122 Chapter 5. Asynchronous Testing

3. tracks(S) = min@(traces(QS))

4. A track is either equal to ǫ, or it ends with an output action.
2

Theorem 5.26

tracks(S1) = tracks(S2) iff traces(QS1) = traces(QS2)

2

r
r r
r
r
r
r
r

r
r
r
r
r

�
��

@
@@

a

b

x

y

c

z

a

x

b

c

y

z

Figure 5.8: Specification S.

Example 5.27
Consider figure 5.6: tracks(S) = {ǫ, a·x, a·x·b·y}. For every trace σ of S there is a
track σt such that σt@ σ.

Also in figure 5.6: tracks(S ′) = {ǫ, a·b·x, a·b·x·y}; tracks(S ′′) = {ǫ, a·x, a·x·b·y} = tracks(S).
a·b·x, a·b·x·y ∈ traces(S ′′), but a·b·x, a·b·x·y 6∈ tracks(S ′′).

Using proposition 5.25.3 and the definition of right-closedness (appendix A):

σ ∈ traces(QS) implies ∃σ′ ∈ tracks(S) : σ′ @ σ

which means that every trace of QS ‘is generated’ by a track of S. Note that this σ′ is
not unique: in figure 5.8 the trace a·b·c·x·y ·z of QS can be the result of the track
a·b·x·y ·c·z or of a·x·b·c·y ·z .

2

5.6 Output Deadlocks of Queue Contexts

In the previous section we saw that the traces of a queue context are completely char-
acterized by the tracks of the specification. Now we investigate the output deadlocks
of a queue context. This will lead to a characterization of queue equivalence with three
different sets, which are all finite for finite specifications (theorem 5.36). For this char-
acterization we distinguish between temporary output deadlocks and permanent output



5.6. Output Deadlocks of Queue Contexts 123

deadlocks, depending on the fact whether the deadlock can be resolved or not. To relate
output deadlocks of a queue context QS to the specification S we distinguish between
deadlocks that are caused by an empty input queue, and deadlocks that are caused by
blocking of the input queue. This section concludes with relating these four different
kinds of output deadlocks.

Temporary and permanent output deadlocks

A queue context is in temporary output deadlock if it waits for inputs: it cannot output
anything, but after some suitable inputs it will generate outputs again. In a permanent
output deadlock it is possible that no output is generated, regardless what extra inputs
are given to the queue context.

Definition 5.28

1. δ-temp(S) =def { σ ∈ L∗ | δS(σ) and ∃σ′ ∈ L∗ : σ @ σ′ and ¬δS(σ′) }

2. δ-perm(S) =def { σ ∈ L∗ | δS(σ) and ∀σ′ ∈ L∗ : if σ @ σ′ then δS(σ′) }
2

Proposition 5.29

1. δ-temp(S) and δ-perm(S) form a partition of δ-traces(S)

2. δ-traces(S1) = δ-traces(S2)
iff δ-temp(S1) = δ-temp(S2) and δ-perm(S1) = δ-perm(S2)

2

In δ-perm and in δ-temp we can find minimal elements, which completely represent
these sets, in a similar way as the tracks of a specification determine the traces of its
queue context.

Representing δ-perm

For δ-perm the situation is analogous to the traces of queue contexts: δ-perm is right-
closed with respect to @, as follows immediately from definition 5.28, which, combined
with the well-foundedness of 〈L∗, @〉, implies that δ-perm is completely characterized
by its minimal elements with respect to @. These minimal elements are called P-tracks .

Definition 5.30
P-tracks(S) =def min@(δ-perm(S))

2

Proposition 5.31
δ-perm(S1) = δ-perm(S2) iff P-tracks(S1) = P-tracks(S2)

2



124 Chapter 5. Asynchronous Testing

Representing δ-temp

The set δ-temp cannot be represented by its minimal elements with respect to @. We
need another partial order: |@| . This relation is a restriction of @ : σ1 |@| σ2 if σ2

can be obtained from σ1 by only shifting inputs to the front; adding input actions at
the end of σ1 is not allowed, hence the length of σ1 and σ2 is the same. With this
extra restriction variants of propositions 5.22.1 and 5.22.2 can be formulated (proposi-
tions 5.33.3 and 5.33.4). Proposition 5.33.5 is a variant of corollary 5.23.2: if σ1 |@| σ2,

then not only QS

σ1
⇒ implies QS

σ2
⇒ , but also the resulting states can be the same.

Proposition 5.33.6 shows the importance of |@| for output deadlocks. It is the analogue
of corollary 5.23.2 for deadlock traces: δ-traces is right-closed with respect to |@| .

Definition 5.32
σ1 |@| σ2 =def σ1 @ σ2 and |σ1| = |σ2|

2

Proposition 5.33

1. 〈L∗, |@| 〉 is a well-founded poset.

2. σ1 @ σ2 implies σ1 ·(σ2\\σ1) |@| σ2

3. If σ1 |@| σ2 and S
σ1
⇒S ′ then [ǫ≪S≪ǫ]

σ2
⇒ [ǫ≪S ′

≪ǫ]

4. If [ǫ≪S≪ǫ]
σ2
⇒ [ǫ≪S ′

≪ǫ] then ∃σ1 : S
σ1
⇒S ′ and σ1 |@| σ2

5. If σ1 |@| σ2 and QS

σ1
⇒Q′ then QS

σ2
⇒Q′

6. If δS(σ1) and σ1 |@| σ2 then δS(σ2)
2

Similar to δ-perm, we introduce the T-tracks as the minimal elements of δ-temp with
respect to |@| :

Definition 5.34
T-tracks(S) =def min |@|(δ-temp(S))

2

Proposition 5.35
For S1, S2 ∈ LTS such that P-tracks(S1) = P-tracks(S2):
δ-temp(S1) = δ-temp(S2) iff T-tracks(S1) = T-tracks(S2)

2

An alternative characterization of queue equivalence

With the tracks, P-tracks and T-tracks we have all the ingredients for an alternative
characterization of queue equivalence, as follows from corollary 5.15, using theorem 5.26
and propositions 5.29.2, 5.31, and 5.35.

Theorem 5.36



5.6. Output Deadlocks of Queue Contexts 125

S1 ≈Q S2 iff tracks(S1) = tracks(S2) and
P-tracks(S1) = P-tracks(S2) and
T-tracks(S1) = T-tracks(S2)

2

r
r
rr

r
r
r���@

@@

P-tracks = {a, b·x}P-tracks = {a, b·x}

T-tracks = {ǫ}T-tracks = {ǫ}

a b

x

b

x

S3 S4

≈Q

tracks = {ǫ, b·x} tracks = {ǫ, b·x}

r
r r

r
r�

��@
@@

T-tracks = ∅T-tracks = ∅

P-tracks = {a, x} P-tracks = {x}

a x x

S1 S2

6≈Q

tracks = {ǫ, x} tracks = {ǫ, x}

Figure 5.9: Examples of tracks, P-tracks and T-tracks.

Example 5.37
In figure 5.9 we see that S1 6≈Q S2, because OS1(a) = {x, δ} 6= OS2(a) = {x}. In
our tracks-representation this is reflected by the fact that a ∈ P-tracks(S1), but not
a ∈ P-tracks(S2).
S3 ≈Q S4, and their tracks are therefore the same.

2

All track-sets of the specifications in example 5.37 are of finite size. So at least for
some specifications the tracks-model is finite. This is therefore an improvement over
the model as defined in section 5.4, because that one is always infinite. Generally, for
specifications with finite behaviour and a finite input alphabet, P-tracks and T-tracks
are also finite, as will be shown further on in this section (remark 5.48).

Relating output deadlocks to the specification

We now investigate how the output deadlocks of a queue context QS can be related
to the specification S, especially to ‘output deadlocks’ of S: S after σ refuses LU .
The implication in one direction holds: output deadlocking traces of a specification S
are also output deadlocking traces of its queue context QS (proposition 5.38); the other
direction is more complicated (proposition 5.41.1).

Proposition 5.38
Let S ∈ LTS, σ ∈ L∗, then S after σ refuses LU implies δS(σ).

2

In case of an output deadlock δS(σ) caused by S after σ refuses LU the trace
σ is completely consumed by S, so that the input queue is empty. Such a deadlock
can sometimes be resolved by putting extra inputs in the input queue: the deadlock



126 Chapter 5. Asynchronous Testing

may be, but need not be temporary. Another way to put a queue context in output
deadlock is when consumption by S of actions from the input queue is blocked. Such
a situation occurs when S cannot consume the first action of the input queue, while S
cannot produce any outputs either. The environment cannot resolve this blocking by
adding extra inputs: this output deadlock is always permanent. A trace σ ·a is such a
permanent, blocking deadlock if S after σ refuses {a}∪LU :

Proposition 5.39
Let S ∈ LTS, σ ∈ L∗, a ∈ LI , then

S after σ refuses {a}∪LU implies σ ·a ∈ δ-perm(S)

2

All deadlock traces caused by proposition 5.38 are collected in δ-empty ; all those caused
by proposition 5.39 are collected in δ-block . Note that the closures according to |@|
and @ are taken into account. E-tracks and B-tracks are the minimal elements of
δ-empty and δ-block with respect to |@| and @ respectively. Note that the alterna-
tive definitions of 5.40.3 and 5.40.4 follow directly from proposition A.1. Using these
definitions proposition 5.41.1 expresses the relation between a specification S and the
output deadlocking traces of its queue context QS: it states that all deadlocks are either
caused by an empty input queue while S cannot output anything, or by blocking of the
input queue. This relation is more complex than the relation between the traces of S
and QS (cf. corollary 5.23). Comparing with δ-temp and δ-perm (proposition 5.29) the
distinction between δ-empty and δ-block is not as profitable: δ-empty and δ-block do
not characterize ≈Q.

Definition 5.40

1. δ-empty(S) =def

{ σ ∈ L∗ | ∃σ′ ∈ traces(S) : σ′ |@| σ and S after σ′ refuses LU }

2. δ-block(S) =def

{ σ ∈ L∗ | ∃σ′ ∈ traces(S), a ∈ LI : σ′ ·a @ σ and S after σ′ refuses {a}∪LU }

3. E-tracks(S) =def min |@|(δ-empty(S))
= min |@|({σ ∈ L∗ | S after σ refuses LU })

4. B-tracks(S) =def min@(δ-block(S))
= min@({σ ·a ∈ L∗×LI | S after σ refuses {a}∪LU })

2

Proposition 5.41

1. δ-traces(S) = δ-empty(S) ∪ δ-block(S)

2. Not for all S: δ-empty(S) ∩ δ-block(S) = ∅

3. S1 ≈Q S2 does not imply δ-empty(S1) = δ-empty(S2),
nor δ-block(S1) = δ-block(S2)

2



5.6. Output Deadlocks of Queue Contexts 127

r
r
r
r
r
r
r
r

�
��

A
AA

a

x

b

y

x

b

y

Figure 5.10: Relating output deadlocks to S.

Example 5.42
Consider figure 5.10. Suppose we want to know if the queue context can get in output
deadlock after a·x·b. There is no output deadlock with ‘empty input queue’ which can
cause an output deadlock: the only trace of S which is in |@| -relation with a ·x ·b is
a·x·b itself, and S after a·x·b must LU . However, there is a blocking deadlock which
can cause an output deadlock: S after x refuses {a}∪LU , and x·a @ a·x·b. Therefore
δS(a·x·b), and this deadlock is permanent.

2

Example 5.43
In figure 5.10, a·x ∈ δ-empty(S) and a·x ∈ δ-block(S), hence δ-empty(S)∩δ-block(S) 6=∅.

In figure 5.9, S3 ≈Q S4, but a ∈ δ-empty(S3) and a 6∈ δ-empty(S4).
Moreover, a 6∈ δ-block(S3) and a ∈ δ-block(S4).

2

Relating T-tracks and P-tracks to E-tracks and B-tracks

According to theorem 5.36, tracks, T-tracks, and P-tracks fully characterize ≈Q. How-
ever, T-tracks and P-tracks cannot easily be obtained from a specification S: they are
defined in terms of the queue context QS. E-tracks and B-tracks are defined in terms of
the specification, however, they do not characterize ≈Q. This leads to the desirability to
relate T-tracks and P-tracks to E-tracks and B-tracks , in particular to obtain T-tracks
and P-tracks from E-tracks and B-tracks.

As already noted, ‘blocking’ deadlocks are always permanent, but for ‘empty-input-
queue’ deadlocks it cannot trivially be decided whether they are elements of δ-perm or
of δ-temp. A T-track is always a trace of S, but a P-track need not be a trace of S.
One might suspect that P-tracks are very closely related to traces of S, e.g.

σ ∈ P-tracks(S) implies σ ∈ traces(S) or ( ∃σ′, a : σ = σ′ ·a and σ′ ∈ traces(S) )

but example 5.45 shows that this is not correct. The relation between P-tracks and
traces of S is expressed by proposition 5.44.5.



128 Chapter 5. Asynchronous Testing

Proposition 5.44

1. δ-block(S) ⊆ δ-perm(S)

2. δ-temp(S) ⊆ δ-empty(S)

3. T-tracks(S) = E-tracks(S)∩ δ-temp(S) (and hence T-tracks(S) ⊆ E-tracks(S))

4. σ ∈ T-tracks(S) implies S after σ refuses LU (and hence σ ∈ traces(S))

5. σ ∈ P-tracks(S) implies
σ ∈ δ-empty(S)

or ( ∃σ′ ∈ traces(S), a ∈ LI : σ′ ·a = σ and S after σ′ refuses {a}∪LU )

6. σ ∈ δ-perm(S) iff δS(σ) and ∀a ∈ LI : σ ·a ∈ δ-perm(S)
2

r
r
r
r
r
r

r r
r
r
r
r
r

@
@@

@
@@

�
��

�
��

x

xa

x

a

a

x

a

a

x

x

a

Figure 5.11: Example of computing the tracks of a specification.

Example 5.45
Let S be the specification of figure 5.11, with LI = {a}, LU = {x}.
Now we have a·x·a·x ∈ P-tracks(S), but a·x·a·x 6∈ traces(S):

δS(a·x·a·x), since S after a·x·x·a refuses LU and a·x·x·a |@| a·x·a·x (propositions 5.38
and 5.33.6). Moreover, a ·x ·a ·x ·a ∈ δ-perm(S), since x ·a ·a ·x ·a ∈ δ-perm(S)
and x·a·a·x·a @ a·x·a·x·a (proposition 5.44.6), and a·x·a·x is @-minimal in δ-perm(S),
because a·x·x and a·x·x·a , the only δ-traces(S) @-smaller than a·x·a·x , are both
elements of δ-temp(S) (they alway produce output x after some a’s).

2

Example 5.46
δ-block(S) ⊆ δ-perm(S) (proposition 5.44.1), but B-tracks(S) 6⊆ P-tracks(S): in fig-
ure 5.9, a·b ∈ B-tracks(S1), but a·b 6∈ P-tracks(S1), since a ∈ P-tracks(S1) and a @ a·b.

2

From proposition 5.44.3 it follows that T-tracks is obtained from E-tracks by removing
traces that are not in δ-temp, i.e. traces in δ-perm, while δ-perm is obtained from



5.6. Output Deadlocks of Queue Contexts 129

δ-block by adding traces in δ-empty that are also in δ-perm:

δ-perm(S) = δ-block(S) ∪ ( δ-empty(S) ∩ δ-perm(S) )

from which P-tracks is obtained as

P-tracks(S) = min@(δ-perm(S))
= min@(δ-block(S) ∪ ( δ-empty(S) ∩ δ-perm(S) ) )
= min@(B-tracks(S) ∪ ( δ-empty(S) ∩ δ-perm(S) ) )

This suggests a procedure for obtaining T-tracks and P-tracks for specifications with
finite set of traces: starting with δ-empty and B-tracks , traces that belong in δ-perm
are moved from δ-empty to B-tracks . If no more traces can be moved, then δ-empty is
equal to δ-temp, and B-tracks is equal to P-tracks . Proposition 5.44.6 gives a criterion
for traces to be moved:

1. Let X = δ-empty(S)
Y = B-tracks(S)

It follows that X ⊇ δ-temp(S) (∗ 5.44.2 ∗)
Y ⊆ δ-perm(S) (∗ 5.44.1 ∗)
X ∪ Y = δ-traces(S) (∗ 5.41.1 ∗)

2. Remove from X all traces that are in δ-block(S) = Y , then the assertions of 1. are
not violated;

3. If σ ∈ X such that ∀a ∈ LI : σ ·a ∈ Y , then (∗ 5.44.6 ∗) σ ∈ δ-perm(S):

X := X\{σ}
Y := min@(Y ∪ {σ})

The assertions are still valid.

4. If there are no more σ ∈ X that can be moved to Y (∗ finiteness X ∗), then
(∗ 5.44.6 ∗) X ∩ δ-perm(S) = ∅. Together with X ⊇ δ-temp(S) it follows that
X = δ-temp(S), and T-tracks(S) = min |@| (X).

Moreover, it follows that Y = δ-perm(S), P-tracks(S) = min@(Y ).

The procedure is illustrated in example 5.47.

Example 5.47
Let S be given by figure 5.6, with LI = {a, b} and LU = {x, y}.

1. We start with computing X = δ-empty(S) and Y = B-tracks(S):

X = δ-empty(S)
= {σ ∈ L∗ | ∃σ′ ∈ traces(S) : σ′ |@| σ and S after σ′ refuses LU }
= { ǫ, a·x, a·x·b·y, a·b·x·y }

Y = B-tracks(S)
= min@({σ ·a ∈ L∗×LI | S after σ refuses {a}∪LU })
= { b, a·x·a, a·x·b·y ·a, a·x·b·y ·b }



130 Chapter 5. Asynchronous Testing

2. There are no elements in X that are also in Y .

3. Now we move elements from X to Y :

a·b·x·y ∈ X and a·b·x·y·a ∈ Y and a·b·x·y·b ∈ Y , so we can move a·b·x·y from X
to Y :

X ′ = { ǫ, a·x, a·x·b·y }
Y ′ = { b, a·x·a, a·x·b·y ·a, a·x·b·y ·b, a·b·x·y }

With similar reasoning we deduce that a·x·b·y ∈ X ′ can be moved to the Y ′:

X ′′ = { ǫ, a·x }
Y ′′ = { b, a·x·a, a·x·b·y ·a, a·x·b·y ·b, a·b·x·y, a·x·b·y }

With the addition of a·x·b·y, Y ′′ now contains non-minimal elements which can
be removed:

Y ′′′ = { b, a·x·a, a·x·b·y }

4. No other elements can be moved from X ′′ to Y ′′′, thus

T-tracks(S) = min |@|(X
′′) = { ǫ, a·x }

P-tracks = Y ′′′ = { b, a·x·a, a·x·b·y }

2

Remark 5.48
Proposition 5.44 shows that for specifications with finite behaviour (traces(S) is fi-
nite) and with a finite input alphabet both T-tracks and P-tracks are finite. For
T-tracks this follows easily from proposition 5.44.4: T-tracks ⊆ traces(S) (using that
S after σ refuses LU implies σ ∈ traces(S)). For P-tracks it follows from proposi-
tion 5.44.5:

P-tracks(S) ⊆ {σ ∈ L∗ | ∃σ′ ∈ traces(S) : σ′ |@| σ} ∪ {σ ·a | σ ∈ traces(S), a ∈ LI}

which are both finite sets.
2

5.7 Queue Implementation Relations

After studying queue equivalence in the previous sections we now consider non-equiva-
lence relations over LTS in queue contexts. The main focus is on relations that can be
used as implementation relations.

The first candidates for implementation relations are the queue context relations (defi-
nition 5.3) with respect to the implementation relations based on synchronous commu-
nication ≤te , ≤tr , and conf (definitions 1.15.1, 3.8, and 3.12).

Definition 5.49

1. I ≤Q
te S =def QI ≤te QS



5.7. Queue Implementation Relations 131

2. I ≤Q
tr S =def QI ≤tr QS

3. I confQ S =def QI conf QS

2

The next possible candidates are inspired by the characterization of queue equivalence
in theorem 5.14. Apart from ≈Q itself as an implementation relation we can consider
relations where the =-symbol is replaced by ⊆ or ⊇. We elaborate on ⊆, since it matches
with our intuition of an implementation relation: if the implementation produces an
output x then the specification must be able to produce the same output x, and the
implementation may only reach an output deadlock δI(σ), i.e. produce no output if the
specification does so. The relation thus defined is called queue preorder ≤O. We also
consider the relations that arise from restricting to outputs and to deadlocks.

Definition 5.50

1. I ≤O S =def ∀σ ∈ L∗ : OI(σ) ⊆ OS(σ)

2. I ≤outputs S =def ∀σ ∈ L∗ : outputsI(σ) ⊆ outputsS(σ)

3. I ≤δ S =def ∀σ ∈ L∗ : δI(σ) implies δS(σ)
2

The following proposition relates the asynchronous and synchronous implementation
relations. Note that the inclusions are strict.

Proposition 5.51

1.

�����������

aaaaaaaaaaa

⊂

⊂

⊂

�����������

aaaaaaaaaaa

⊂

⊂

⊂

≤tr ∩ conf

⊂

≤te =

conf

≤tr

= ≤Q
tr ∩ confQ

= ≤outputs ∩ ≤δ

≤Q
te≤O =

confQ

≤δ

≤outputs

≤Q
tr =

2. For implementations with finite behaviour: ≤δ = ≤O
2

Example 5.52
First consider figure 5.5:

◦ S1 ≈Q S2, so ≤O, ≤Q
tr, and confQ hold in both directions, but none of the syn-

chronous implementation relations holds. This shows that the inclusion ≤te ⊂≤O

is strict.

◦ Since T1 ≈Q T2, also here ≤O, ≤Q
tr, and confQ hold in both directions. Moreover,

T1 ≤te T2, but T2 6≤te T1, hence again: ≤te ⊂≤O.



132 Chapter 5. Asynchronous Testing

◦ OU1(a) = {x} ⊆ {x, δ} = OU2(a), and analogous for b, while for other traces of U1:
OU1(σ) = OU2(σ), so U1 ≤O U2 and U2 6≤O U1. Also U1 ≤te U2 and U2 6≤te U1.

P1 P2 P3 P4

r

r
r r
r r

rr
r

r r

r
r r

r
r
r
r r

r
rr
r

r
��
��r

r
A
AA

�
��

�
��

A
AA

A
AA

�
��

�
��

A
AA �

a

x yx

a a x

x

a a

x

x a a

yx

b y

P5 P6 P7 P8 P9

Figure 5.12: Examples of implementations and specifications.

In figure 5.12:

◦ ≤O is not related to ≤tr, nor to conf: P6 ≤O P7, but P6 6≤tr P7, and P4 ≤tr P1,
but P4 6≤O P1; P2 conf P1, but P2 6≤O P1, and P1 ≤O P2, but P1 /conf P2.

Since ≤O is not related to conf, the test cases derived according to the algorithms
of chapter 4 are not sound with respect to asynchronous testing: the test case
a; y; stop of P2 rejects P1 as a correct implementation.

◦ The same example of P1 and P2 applies to show that conf is not related to confQ.

◦ ≤O is strictly contained in confQ and ≤Q
tr: P3 confQP1, while P3 6≤O P1, and

P4 ≤
Q
tr P1, while P4 6≤O P1.

◦ In implementations ≤O does not allow extra outputs: P2 6≤O P1, nor absence of
outputs when outputs are specified: P4 6≤O P1, nor spontaneous outputs when no
outputs are allowed: P3 6≤O P1. Combining these requirements we see that the
only correct implementation of P1 according to ≤O is P1 itself.

◦ As opposed to conf and confQ, ≤tr and ≤Q
tr are related: ≤tr ⊂≤Q

tr. They are not

equal: P6 ≤
Q
tr P7, but P6 6≤tr P7.

◦ Adding a branch a·x to the output action x does not change the process: P3 ≈Q P5,
but adding the same branch to the input action a changes the process: P4 6≈Q P6.

◦ P9 spontaneously generates outputs; it has no deadlocks. Hence P9 ≤δ R for any
R, in particular P9 ≤δ P5 and P9 ≤δ P7, whereas P9 6≤O P5 and P9 6≤O P7. Like P9,
all specifications that can distinguish between ≤δ and ≤O have infinite behaviour.



5.7. Queue Implementation Relations 133

2

The relation ≤O seems to be an interesting implementation relation in queue con-
texts: in example 5.52 we saw that confQ sometimes allows spontaneous outputs, ≤Q

tr

(=≤outputs) does not preserve deadlock behaviour, and ≤δ only requires that an output
occurs, no matter what output. The implementation relation ≤O matches with our
intuition of what constitutes a correct implementation in a queue context. Moreover,
it is implied by and follows naturally from the important synchronous relation ≤te .

However, analogous to the synchronous relation ≤te , ≤O has a drawback in using it
as a basis for conformance testing of implementations with respect to specifications: it
is defined using a quantification ∀σ ∈ L∗. For the purpose of testing this poses the
problem of having to verify OI(σ) ⊆ OS(σ) for all possible traces in L∗. A reduction of
the number of traces for which to test is desirable. For synchronous conformance testing
the coarser relation conf was defined to cope with this problem. The relation conf is
obtained from ≤te by reducing the quantification to the traces of the specification S
(definition 3.12).

An analogous approach can be taken for ≤O: we consider relations ≤F with F a subset
of L∗, which would typically depend on S:

I ≤F S =def ∀σ ∈ F : OI(σ) ⊆ OS(σ) (5.2)

The first obvious choice for F is traces(S), defining the relation ≤tr(S):

I ≤tr(S) S =def ∀σ ∈ traces(S) : OI(σ) ⊆ OS(σ) (5.3)

The relation ≤tr(S) has an undesirable feature; equivalent specifications do not have the
same conforming implementations, i.e. ≤tr(S) does not satisfy:

S1 ≈Q S2 implies ( I ≤tr(S) S1 iff I ≤tr(S) S2 ) (5.4)

Consider figure 5.13. S1 ≈Q S2, but I2 ≤tr(S) S1 and I2 6≤tr(S) S2: OS1(a·b) = OS2(a·b) =
{x}; OI2(a·b) = {x, y}. However, for I2 ≤tr(S) S1, OI2(a·b) ⊆ OS1(a·b) is not required,
since a·b 6∈ traces(S1).

A next possible choice is F = traces(QS), defining the relation ≤tr(QS). Since S1 ≈Q

S2 implies traces(QS1) = traces(QS2) (corollary 5.15) it is easy to check that the
analogue of (5.4) is satisfied. However, as we will see in proposition 5.55 this new
relation is equal to ≤O.

Also tracks(S) can be considered as the basis for an implementation relation. From
theorem 5.26 we know that two equivalent specifications have the same tracks, thus
requirement (5.4) is satisfied for any set F that only depends on tracks(S).

There are different possibilities for considering the tracks as the basis for an implemen-
tation relation. The first choice is F = tracks(S) in (5.2), but then P6 would conform
to P1 (figure 5.12), which looks counterintuitive. Conformance is caused by the fact
that the tracks of P1 are ǫ and a ·x, which both have OP1(σ) = {δ}. There is no re-
quirement that after a the output x shall occur. This suggests that we should not test



134 Chapter 5. Asynchronous Testing

for tracks of the specification, but for traces for which an output can be expected, i.e.
traces σ such that σ·x is a track. Note that tracks are always equal to ǫ or end with an
output action (proposition 5.25.4). The relation thus defined is called asco. There are
no requirements on spontaneous outputs from the implementation at points where no
output was expected according to the tracks.

The relation aconf is closely related to asco, the difference being that it does check
for spontaneous outputs for all prefixes of tracks(S), also those where no output is
expected.

Definition 5.53

1. I asco S =def ∀σ ∈ L∗, ∀x ∈ LU : if σ ·x ∈ tracks(S) then OI(σ) ⊆ OS(σ)

2. I aconf S =def ∀σ ∈ tracks(S), ∀σ′ ∈ L∗ : if σ′ � σ then OI(σ
′) ⊆ OS(σ′)

2

Proposition 5.54
asco and aconf are reflexive, but not transitive.

2

The relations ≤O, ≤tr(QS ), ≤tr(S), aconf, asco are related in the following proposition.

Proposition 5.55

1. ≤O = ≤L∗ = ≤tr(QS ) ⊂ ≤tr(S) ⊂ aconf ⊂ asco

2. The relations asco and aconf do not contain, nor are contained in ≤Q
tr (≤outputs),

confQ, or ≤δ.
2

S1 S2 I1 I2 I3

r

r
r
r
r r

r
r
r
r
r

r

r

r
r
r
rr

r r

r
r
r
r
r
r r

r
r
rr
r
r
r
r

�
��

A
AA

A
AA

�
��

A
AA

�
��

�
��

A
AA

y

b

x

a a

x

b

y

b

x

y

a

x

b

y z

a

x

b

y

b

y

x

a

b

y

a

x

b

y

Figure 5.13: Implementations for asco and aconf.

Example 5.56
In figure 5.12: For asco, P1 only specifies that after a an output x must occur:
P3, P5, P8 asco P1.
For aconf, P1 also specifies that after ǫ and a·x no output may occur: P3, P5 /aconf P1,
and P8 aconf P1.



5.7. Queue Implementation Relations 135

In figure 5.13: I1 /aconf S1, because OI1(a·x·b) = {y, z} 6⊆ OS1(a·x·b) = {y}. I2 aconf S1,
although I2 6≤O S1. I3 /aconf S1 because OI3(ǫ) = {x} 6⊆ OS1(ǫ) = {δ}.

We also have I1 /asco S1, and I2 asco S1, but I3 asco S1: we do not check OI3(ǫ),
because we do not expect any output until we provide the input a. aconf does test for
such unexpected outputs.

2

Other implementation relations can be defined by taking other sets F that depend on
tracks(S), e.g. defining F based on the relations @ or |@|. As an example a family
of implementation relations aconfn, n ∈ N, is introduced. These implementation
relations gradually range from aconf (for n = 0) to ≤O (in the limiting case). In
aconf we require OI(σ) ⊆ OS(σ) for all prefixes of tracks(S); in ≤O this is required
for all traces in L∗. According to proposition 5.55.1 this corresponds to all traces in
traces(QS), i.e. all traces that are in @-relation to tracks(S) (proposition 5.25.2). These
traces can be obtained from tracks by shifting input actions to the front and adding
input actions at the end. The family of relations aconfn is defined by limiting the
number of shifts and additions of actions with respect to the tracks. This number of
shifts and additions is defined by the relation @n: σ1@

nσ2 iff σ2 can be obtained from
σ1 by exactly n shifts or additions.

Definition 5.57
For n a natural number,

1. @n ⊆ L∗ × L∗ is defined as the smallest subset of @ satisfying

◦ if σ1, σ2 ∈ L∗
I then σ1@

nσ2 =def |σ2\\σ1| = n

◦ if σ1 = ρ1 ·x·σ
′
1, σ2 = ρ2 ·x·σ

′
2, with ρ1, ρ2 ∈ L∗

I , x ∈ LU , σ′
1, σ

′
2 ∈ L∗,

then σ1@
nσ2 =def ∃m ≤ n : ρ1@

mρ2 and σ′
1 @ n−m(ρ2\ρ1)·σ

′
2

2. The tracks of order n of a specification S are defined by

tracksn(S) =def {σ ∈ L∗ | ∃σ′ ∈ tracks(S) : σ′ @n σ}

3. The nth order of aconf is defined by

I aconfnS =def ∀σ ∈
⋃n

i=0 tracks i(S), ∀σ′ ∈ L∗: if σ′ � σ then OI(σ
′) ⊆ OS(σ′)

2

Proposition 5.58

1. σ1@
0σ2 iff σ1 = σ2

2.
⋃∞

n=0 @n = @

3. tracks0(S) = tracks(S)

4. tracksn(S) ⊆ traces(QS)

5.
⋃∞

n=0 tracksn(S) = traces(QS)

6. aconf 0 = aconf

7.
⋂∞

n=0 aconfn = ≤O

8. m ≤ n implies aconfm ⊇ aconfn



136 Chapter 5. Asynchronous Testing

2

Example 5.59
In figure 5.13, I2 aconf S1 (example 5.56). However, I2 /aconf 1S1:
tracks1(S1) = {a, b, a·x·a, a·x·b, a·x·b·y ·a, a·x·b·y ·b, a·b·x·y}.
a·b is a prefix of a·b·x·y ∈ tracks1(S1), and OI2(a·b) = {x, y} 6⊆ {x} = OS1(a·b).
We see that tracks1(S1) is already more than twice as large as tracks(S1). The number
of traces to be considered for aconfn increases rapidly with increasing n.

2

Different implementation relations allow different classes of conforming implementa-
tions. Different criteria may be used to choose a suitable implementation relation. If in
example 5.59 it is unacceptable that I2 is accepted as a correct implementation of S1,
then a more discriminating implementation relation than aconf must be chosen, e.g.
aconf 1. If ≤O is considered as the ideal implementation relation, which is not testable
due to the infinite number of traces, then the choice of a weaker implementation rela-
tion, like asco or aconfn for some n, corresponds to a kind of test case selection (cf.
chapter 6).

5.8 Test Derivation

In this section we deal with test derivation for the family of implementation relations
≤F (F ⊆ L∗, (5.2)). The approach taken is by first considering test cases for sets
containing only one trace: F = {σ}. Combining all test cases for every trace in F gives
a test suite for ≤F .

Our test cases are written in DLTS (section 3.4.3, definition 3.25.1). Passing a test
is expressed by passesD (definition 3.25.2), however, a test case does not observe the
implementation I but the queue context [ǫ≪I≪ǫ]. This asynchronous notion of passing
a test is denoted by a-passesD, and is used in the rest of this section.

Definition 5.60
Let I ∈ LTS, t ∈ DLTS, then I a-passesD t =def [ǫ≪I≪ǫ] passesD t

2

We define the tester TS(σ) and we show that it is a complete tester for ≤{σ}.

Definition 5.61
Let S ∈ LTS, σ = e1 ·. . .·en ∈ L∗, then (figure 5.14)

TS(σ) =def

if not δS(σ): e1; . . . ; en; Σ {x; stop | x ∈ outputsS(σ)},
and, for ρ ∈ traces(TS(σ)) : v(TS(σ) after ρ) = fail if ρ = σ,

pass if ρ 6= σ
if δS(σ): e1; . . . ; en; Σ {x; stop | x ∈ LU\outputsS(σ)},

and, for ρ ∈ traces(TS(σ)) : v(TS(σ) after ρ) = pass if ρ � σ,
fail if ρ 6� σ



5.8. Test Derivation 137

r
r
r
r
r

r r r

r
r
r
r
r

r r r �����
�

��
@

@@

�����
�

��
@

@@

TS(σ), if δS(σ)TS(σ), if not δS(σ)

. . .

en

e2

. . .

en

e2

pass pass pass fail fail fail

.

.

.

.

.

.

e1 e1

pass

pass

pass

pass

fail pass

pass

pass

pass

pass

LU\outputsS(σ)outputsS(σ)

Figure 5.14: A complete tester for ≤{σ}.

2

Proposition 5.62
{TS(σ)} is a complete test suite for S with respect to ≤{σ}.

2

r
r

r
r
r
r
r r

r
r r

r
r
r
r

r
r
r
r
r r

�
��

@
@@

�
��@

@@

�
��@

@@

shil

liq

choc

pen

liq

fail fail

TS(ǫ)S TS(shil·pen·liq)

shil

shil

liq

pass

pass

fail

pass

TS(shil·shil)

shil

pen

liq

choc

pass pass

pass pass

pass

pass

fail

liq

liq pen

liq

choc

Figure 5.15: Examples of test cases.

Example 5.63
In figure 5.15 another candy machine is specified (cf. example 5.2), together with three
test cases. These these cases test for ≤{ǫ}, ≤{shil ·pen·liq}, and ≤{shil ·shil}.

◦ TS(ǫ): The only observation that is made in the initial state is that the machine
is in output deadlock: δS(ǫ); the machine does not give any liquorice or chocolate
for free. The test case TS(ǫ) tests this: it gives a fail verdict if an implementation
gives something for free.

◦ TS(shil·pen· liq): There are two possible observations: the first possibility is that
the right branch in the specification is followed, which results in getting another



138 Chapter 5. Asynchronous Testing

liquorice. The other possibility is that the penny is still in the tube, while the
machine already supplies liquorice: (shil · liq ·pen) @ (shil ·pen · liq). In this case
chocolate is obtained. Either of the two must be supplied, an output deadlock is
not allowed. Test case TS(shil·pen·liq) tests this.

◦ TS(shil·shil): After putting two shillings in the machine the first one will be taken
by the machine, while second one remains in the tube. The machine produces
liquorice, which is tested by TS(shil·shil).

2

Using test suites for ≤{σ} it is straightforward to construct a complete test suite for ≤F

by collecting the test cases TS(σ) for every σ ∈ F :

Theorem 5.64
{TS(σ) | σ ∈ F} is a complete test suite for S with respect to ≤F .

2

Theorem 5.64 gives a way of deriving a complete test suite for any implementation
relation ≤F . The test cases TS(σ) have some resemblance to the must tests of chapter 3.
Like must tests they are not very efficient: during execution of the trace σ no information
is extracted from an implementation; only the final branches can detect errors.

Construction of TS(σ) requires computation of the observations δS(σ) and outputsS(σ).
For simple specifications this is straightforward, but for complex specifications, espe-
cially specifications containing a lot of nondeterminism, this may pose problems, as was
shown in the previous sections. In the next section we elaborate on an algorithm to
compute systematically outputs and deadlocks.

Example 5.65
If we apply the above test derivation algorithm to the specification S of figure 5.16
with implementation relation ≤tr(S), we get the test suite Π≤tr(S)

(S) of figure 5.16. In
the specification, after shil a choice occurs between an input and an output. This is
a typical situation where we must be prepared for the peculiarities of asynchronous
communication: if the tester tries to input pen, the IUT might just have chosen output
liq , and the tester must be aware that this possibility is allowed. We see that the
derived test suite handles this case correctly: test case TS(shil·pen) will not mark the
reception of liq after inputting shil and pen as an error.

The tracks of S are {ǫ, shil · liq , shil ·pen ·choc}, so Π≤tr(S)
(S) is also a test suite for

aconf. A test suite for asco consists of only TS(shil) and TS(shil·pen). For ≤O infinitely
many test cases have to be added: TS(shil·shil·. . .), etc.

2

Translation of test cases to TTCN

The test notation TTCN (section 1.3.3, [ISO91a, part 3]) is based on asynchronous com-
munication. The communication points in TTCN, PCOs, are modelled by unbounded
queues. This makes it possible to transform our asynchronous test cases to TTCN.
Figure 5.17 gives a scheme for such a transformation. The transformation is given by



5.8. Test Derivation 139

r
rr

r
r
r r
r

r
r

r

r
r
r
rr

r
r
r

r
r
r
rr r
r r

�
��@

@@

�
��@

@@

�
��@

@@ �
��@

@@

�
��@

@@

S

fail

pass

fail

fail

pass

pass

pass

pass

pass

fail

pass

pass

pass

pass

pass

pass

pass

failfail

fail

passfail

TS(shil·liq) TS(shil·pen) TS(shil·pen·choc)

TS(shil)TS(ǫ)

shil

liq pen

choc

liq choc shil

liq

liq

choc

shil

pen

choc

shil

choc

shil

liq liq

liq choc

pen

s0

s1

s3

s4

s2

Figure 5.16: S and its test suite Π≤tr(S)
(S).



140 Chapter 5. Asynchronous Testing

induction on the structure of the tree representing the test case. There is one point of
control and observation (PCO) that consists of two queues: one for the output actions
of the system (LU ), and one for the input actions (LI). An output action x is translated
to PCO?x: the output action of the system is an input action to the test case, hence
the question mark. An input action a is translated to PCO!a. In every state of the
TTCN test case in which the tester waits for system outputs a timer must be added to
detect output deadlock. In these states we also add a PCO?OTHERWISE to cope with
unspecified outputs. If a state is a pass-state, we assign verdict pass to the timer ex-
piration and to OTHERWISE, otherwise the verdict is fail. Strictly speaking the TTCN
standard stipulates that an OTHERWISE should only lead to a fail verdict. Our use of
OTHERWISE should then be taken as a shorthand for the enumeration of all the other
actions. Note that the translation of a terminal state only supplies a verdict, which is
the verdict of the preceding TTCN line.

behaviour verdict

START TIMER Si

PCO?x 1

TTCN(T1).
.
.

PCO?x n

TTCN(Tn)

VPCO?OTHERWISE

?TIMEOUT TIMER Si V

r

r

r r

r
r

r
r r r

�
�� A

AA

�
��@

@@�
��

�
�� A

AA �
�� A

AA

Translation of trees
beginning with
system outputs

beginning with
Translation of trees

system inputs

behaviour

PCO!a

verdict

Translation of
terminal states

behaviour verdict

V

TTCN(T1)

verdict V

T1

verdict V

T1 Tn

xn

si

x1
. . .

verdict V

a

Figure 5.17: Translation of a test case to TTCN.

To obtain a correct TTCN test case the translation only makes sense if none of the
following three cases occurs:

◦ nondeterministic choice between actions

◦ choice between input and output actions

◦ choice between more than one input action



5.9. Computation of Outputs and Deadlocks 141

It is easy to check that these conditions are fulfilled by any TS(σ) (definition 5.61).

Test case TS(shil·liq)

behaviour verdict

PCO!shil
START Timer1

PCO?liq
START Timer2

PCO?liq fail

PCO?choc fail

PCO?OTHERWISE pass

?TIMEOUT Timer2 pass

PCO?OTHERWISE pass

?TIMEOUT Timer1 pass

Figure 5.18: TTCN test case TS(shil·liq)

Example 5.66
If we translate the test cases TS(shil· liq) and TS(shil·pen) of example 5.65 to TTCN,
we get the test cases in figures 5.18 and 5.19.

2

Test case TS(shil·pen)

behaviour verdict

PCO!shil
PCO!pen

START Timer
PCO?liq pass

PCO?choc pass

PCO?OTHERWISE fail

?TIMEOUT Timer fail

Figure 5.19: TTCN test case TS(shil·pen)

5.9 Computation of Outputs and Deadlocks

For the derivation of test cases outputsS(σ) and δS(σ) are needed. This section gives
a method for their systematic computation. It is based on an extension of proposi-
tion 5.22.3: not only every sequence of transitions of a queue context can be replaced
by a sequence to a state with empty output queue, but also the outputsS(σ) and δS(σ)
can be obtained from these states.



142 Chapter 5. Asynchronous Testing

We define the reachability function µS to collect all possible states with empty output
queue that can be reached after performing a trace σ. Such a state of a queue context
consists of the state of the process in the queue context, together with the contents of
the input queue.

Definition 5.67
Let S ∈ LTS, then the reachability function µS : L∗ → P(LTS × L∗

I) is defined by

µS(σ) =def { 〈S ′, σ′〉 | [ǫ≪S≪ǫ]
σ
⇒ [ǫ≪S ′

≪σ′] }

The outputs µω and the deadlock predicate µδ of a pair 〈S ′, σ′〉 are defined by

1. µω ( 〈S ′, σ′〉 ) =def { x ∈ LU | S ′ x
⇒}

2. µδ ( 〈S ′, σ′〉 ) =def σ′ = ǫ and ∀x ∈ LU : S ′
x

6⇒ or

σ′ = a·σ′′ and ∀x ∈ LU ∪ {a} : S ′
x

6⇒
2

The reachability function serves the same purpose as Safterσ (and the related expres-
sion choice S after σ ) in the synchronous case. It expresses how a system proceeds
after σ has been observed.

We show two properties of the reachability function. The first property, proposi-
tion 5.68, shows that outputsS(σ) and δS(σ) are easily obtained from µS(σ). The
second one, proposition 5.69, states that the reachability function can be computed
incrementally with respect to traces, i.e. µS(σ ·a) is easily computed from µS(σ). This
means that given a set of traces F ⊆ L∗, outputsS(σ) and δS(σ) can be computed
systematically for all σ ∈ F .

Proposition 5.68

1. outputsS(σ) =
⋃
{ µω( 〈S ′, σ′〉 ) | 〈S ′, σ′〉 ∈ µS(σ) }

2. δS(σ) iff ∃〈S ′, σ′〉 ∈ µS(σ) : µδ(〈S ′, σ′〉)
2

Proposition 5.69

1. µS(ǫ) = { 〈S ′, ǫ〉 | S
ǫ
⇒S ′ }

2. µS(σ ·a) = { 〈S ′, σ′ ·a〉 | 〈S ′, σ′〉 ∈ µS(σ) }

∪ { 〈S ′′, ǫ〉 | 〈S ′, ǫ〉 ∈ µS(σ) and S ′ a
⇒S ′′ }

3. µS(σ ·x) = { 〈S ′′, σ′′〉 | ∃〈S ′, σ′〉 ∈ µS(σ), ∃ρ � σ′ : S ′ x·ρ
⇒S ′′ and σ′′ = σ′\ρ }

2

Example 5.70
Consider S in figure 5.16. We compute outputsS(σ) and δS(σ) for all σ ∈ F = traces(S)
by first computing µS(σ). The results are depicted in the tree of figure 5.20. The edges
of the tree are formed by all σ ∈ F = traces(S); a node that is reached from the root
via trace σ contains all pairs 〈S ′, σ′〉 ∈ µS(σ). To compute a next node of the tree only
the contents of the parent node is required. outputsS(σ) and δS(σ) as they follow from



5.9. Computation of Outputs and Deadlocks 143

#
"

 
!

#
"

 
!

#
"

 
!

#
"

 
!
#
"

 
!

�������� HHHHHHHH

choc

〈s0, ǫ〉

not δ

〈s0, shil〉 {liq}

〈s1, ǫ〉

penliq

∅

δ
〈s2, ǫ〉

〈s4, ǫ〉

∅

δ

{liq , choc}

∅

δ

shil

not δ

〈s0, shil·pen〉
〈s1, pen〉
〈s3, ǫ〉

Figure 5.20: Reachability function of S (figure 5.16)



144 Chapter 5. Asynchronous Testing

the node contents, are also depicted with each node. (cf. the failure tree of [Bri87] for
the synchronous case.)

A few example computations:

µS(ǫ)

= {〈S ′, ǫ〉 | S
ǫ
⇒S ′}

= {〈s0, ǫ〉}

µS(shil·liq)

= {〈S ′′, σ′′〉 | ∃〈S ′, σ′〉 ∈ µS(shil), ∃ρ � σ′ : S ′ liq·ρ
⇒S ′′ and σ′′ = σ′\ρ}

= {〈s2, ǫ〉}

µS(shil·pen)
= {〈S ′, σ′ ·pen〉 | 〈S ′, σ′〉 ∈ µS(shil)}

∪ {〈S ′′, ǫ〉 | 〈S ′, ǫ〉 ∈ µS(σ) and S ′ pen
⇒S ′′}

= {〈s0, shil·pen〉, 〈s1, pen〉} ∪ {〈s3, ǫ〉}

outputsS(shil·pen)
=

⋃
{µω(〈S ′, σ′〉 | 〈S ′, σ′〉 ∈ µS(σ)}

= ( out(s0) ∪ out(s1) ∪ out(s3) )⌈LU

= {liq , choc}
2

Having the reachability function defined over labelled transition systems, the next step is
to look for compositional rules to derive it from behaviour expressions in BEX , analogous
to the way it has been done for synchronous test derivation in the section 4.3. Since the
reachability function contains all information needed to derive test cases, this would give
a compositional way of deriving asynchronous test cases from behaviour expressions.
Deriving such compositional rules is straightforward, especially when the language is
restricted according to equation (4.6). In fact, the only attribute needed is B after σ .
Elaboration of these rules is left for further work.

5.10 Concluding Remarks

This chapter presented a queue model to formalize asynchronous testing, and to re-
late it to the synchronous case. Many extensions of the presented theory are possible:
axiomatization of queue equivalence, application to languages with asynchronous com-
munication, other (equivalence) relations in queue contexts, other contexts, etc. We
discuss a few items.

Restricted classes of specifications The presented theory of queue contexts is
rather complex, especially in deriving deadlock properties of queue contexts from the
original specification. Derivation of deadlocks is easier if a specification is fully-specified
[BU91], which means that it can never refuse input actions:

∀σ ∈ L∗, ∀a ∈ LI : S after σ must LU ∪ {a}



5.10. Concluding Remarks 145

Fully specifiedness implies that there are no blocking deadlocks (definition 5.40):

B-tracks(S) = δ-block(S) = ∅

so that the complexity of finding deadlocks is reduced (proposition 5.41).

Robust systems are usually implicitly fully-specified by requiring to output an error
message if a non-specified, erroneous input message occurs.

Specification languages that use asynchronous communication usually impose fully-
specifiedness by some built-in mechanism. In TTCN an OTHERWISE behaviour spec-
ifies what to do if an unexpected message arrives; SDL signals that cannot be consumed
by the receiving process are neglected. Note, however, that this feature of SDL compli-
cates derivation of the tracks of a specification. For every input signal the possibility of
neglecting it must be expressed explicitly in the labelled transition system by a transi-
tion that starts and ends in the same state. This implies that the set of tracks is always
infinite, since every possible sequence of neglected inputs followed by an output action,
constitutes a track.

r

r
ra

x

��
��

�
b

@@
��a

@@
��

x

�
�
�
�

@
@
�

�

SSDL

Figure 5.21: Example SDL process.

Example 5.71
The SDL specification of figure 5.21 may neglect in its initial state any input unequal to
a. For LI = {a, b} it is represented by the transition system SSDL, which has infinitely
many tracks: track(SSDL = {ǫ, a·x, b·a·x, b·b·a·x, b·b·b·a·x, . . .}.

2

Axiomatization Given a language with labelled transition systems as underlying se-
mantics, theorems for queue equivalence can be derived. Such theorems can improve
understanding of the nature of queue equivalence, and they facilitate comparing spec-
ifications at language level. An example of such a theorem expressed in the language
BEX is

x; B1 2 y; B2 ≈Q i; x; B1 2 i; y; B2



146 Chapter 5. Asynchronous Testing

An interesting topic is the comparison of our work with [JJH90], where an axiomatic
approach is used for embedding asynchronous communication into CSP.

Transductions Transductions are a kind of inference rules specifically suited to define
the behaviour of contexts [Lar90]. The rule

C
a

−→
b

C ′

specifies that if the process in the context can do b then the whole process makes the
transition a to C ′. Queue contexts can be easily described using transductions. This
allows to apply theories of transductions to queue contexts e.g. [Bri92], which addresses
the problem of solving equations of the form X ≈ C[X]. For queue contexts this could
for instance be used to prove the intuition that queue contexts can be concatenated:

[ǫ≪S≪ǫ] ≈ [ǫ≪[ǫ≪S≪ǫ]≪ǫ]

Other relations Queue contexts can be studied for other relations, e.g. bisimula-
tion equivalence, failure trace equivalence, ready trace equivalence, etc., thus extending
the diagram of proposition 5.51. In [Abr87] a hierarchy of equivalences based on syn-
chronous testing is identified. It can be investigated how this applies to queue contexts,
especially whether equivalences in the synchronous hierarchy coincide when observed
in a queue context.

For test generation an important question is which implementation relations are pre-
served by which contexts, and whether test cases derived for one context, can be used
for testing in other contexts, reducing the need to duplicate test derivation for each
separate context or testing architecture.

S2S1

r r
r

r
r
r

r r
r

rr
r r

r

r
r

r
r

r

�
��@

@@ �
��@

@@

�
��@

@@

@
@@

�
��

aa

yb

x

yb

x

a

b

θ y

a

y

a

x

T

Figure 5.22: Testing with deadlock detection.

As an example consider figure 5.22: S1 ≈Q S2. Using the label θ as in [Lan90], with
the intuitive meaning that a θ-transition can occur if and only if no other transitions



5.10. Concluding Remarks 147

are possible, the test T can tell S1 and S2 apart, so they are not ‘queue-failure trace’
equivalent. The θ-label is able to detect deadlock, so it can be decided whether the left
or right branch has been chosen. An open question is the relation between deadlock
detection using θ and deadlock occurrence δ.

Potentially interesting relations can be defined by considering deadlock occurrence δ as
a special ‘observable’ action. In many places δ already occurs like an ordinary label.
By extending LU with the special label δ, and defining traces of queue contexts over
LI ∪ LU ∪ {δ} new (equivalence) relations based on such traces can be defined and
investigated (cf. the role of deadlock δ in ACP [Bae86, BK85]).

Other contexts Many possibilities of extending the presented theory can be found
in considering other contexts than the one input–one output unbounded queue. We
can think of bounded queues, for example with length one (buffers), priority messages
in queues, and more than one input and/or output queue. Taking more queues for one
direction makes it possible that input actions sent via different queues do not arrive
in the same order as they were sent, thus complicating the relation between traces of
a specification and its queue context. More queues lead to an explosion of possible
interleavings of orderings of send and receive of input and output actions. One might
consider introducing (one of) the formalisms of event structures, which are better suited
for coping with explosions of interleavings [Lan92].

There are infinitely many possible contexts ranging from buffers to complete services.
All these contexts can be studied separately, but also within one general framework.
In [BKPR91] such a framework is presented based on modelling the context (or medium)
by its state space, and modelling communication by transformations performed by the
communicating systems on this state space. It has to be investigated how our theory
relates to that framework.

Introducing more queues in the context makes it possible to use the theory for the
the problem of comparing specifications that use asynchronous communication, like
Estelle and SDL, with specifications that use synchronous communication, like LOTOS.
Both Estelle and SDL do allow more queues or channels to communicate with the
environment. Realistic use of TTCN requires at least two pairs of input-output queues,
one for the upper PCO (Point of Control and Observation) of the implementation and
one for the lower PCO.

The presented theory can also be of use in deriving test cases from specifications that
are based on asynchronous communication, like Estelle and SDL. For example for SDL
the asynchronous communication tree (ACT) model [BH89] can be combined with the
presented theory. For finite state machine specifications the generated test cases can
be compared with the ones generated using finite state machine based test generation
techniques like distinguishing sequences or Unique Input/Ouput sequences [ADLU88,
BU91].



148 Chapter 5. Asynchronous Testing

Test generation The test generation algorithms presented in section 5.8, using the
algorithms in section 5.9, have to be extended to cope with languages like BEX and
BEXv, and finally with realistic specification languages like LOTOS.

The transformation of the generated test cases to TTCN lacks a formal basis, partly
because of the lack of a completely formally defined semantics for TTCN. This trans-
formation should be elaborated and given a more formal basis, so that it can be related
to the practice of conformance testing, and so that existing TTCN-based tools can be
used.



Chapter 6

Test Selection

6.1 Introduction

Test generation algorithms can be used to generate a large number of test cases, given
a specification in the appropriate formalism (chapters 4 and 5). All these test cases
can detect errors in implementations, and errors detected with these test cases indeed
indicate that an implementation does not conform to its specification. However, the
number of test cases that can be generated may be very large, or even infinite. This
implies that execution of all generated test cases is impossible (because the number of
generated test cases is infinite), unfeasible (if the number of test cases is very large),
or simply too expensive. In these cases a selection of the generated test cases has to
be made. Such a reduction of the size of the (automatically) generated test suite by
choosing an appropriate subset thereof is called test selection.

Test selection should not be done at random, but a strategy should be applied, such that
the resulting reduced test suite is valuable for conformance testing, in the sense that
there is a large chance of detecting non-conforming implementations. In software testing
some heuristics for test selection are known, e.g. equivalence partitioning and boundary
value analysis [Mye79]. In the context of protocol testing following ISO9646 (section 1.3)
[ISO91a, part 2, section 10.4] gives hints for the analogous problem of selection of test
purposes. (Note that the term ‘test selection’ in the context of ISO9646 refers to the
selection process of test cases from a (standardized) abstract test suite based on values
of PICS and the PIXIT (section 1.3.4).)

Test selection is an activity that in principle cannot be based solely on the formal spec-
ification of a system. In order to decide which test cases are more valuable than others,
extra information, outside the realm of the specification formalism, is indispensable.
Such information may include knowledge about which errors are frequently made by
implementers, which kind of errors are important, e.g. in the sense of catastrophic con-
sequences, what functionality is difficult to implement, what functionality is crucial for
the well-functioning of the system, etc. Although a generally applicable method for
test selection cannot be given, not even within the realm of one particular specification

149



150 Chapter 6. Test Selection

formalism, still some classification and decomposition of the problem of test selection
can be given.

This chapter introduces a framework for test selection, extending the ideas presented in
[BAL+90]. The approach is based on assigning values and costs to test suites. Minimal
requirements for assigning such costs and values are introduced. The selected test suite
will be the one that combines the highest value with the lowest cost. The value assigned
to a test suite is related to the error detecting capability of that test suite.

The formal framework for test selection is introduced in section 6.2, defining valua-
tion, cost and coverage of a test suite, discussing the role of test purposes and their
negations, called test failures, and introducing the weight of test purposes and test
failures. A method to assign values to test suites based on the probability of rejecting
non-conforming implementations is elaborated in section 6.3. In section 6.4 a simple
example of a labelled transition system specification is elaborated. Finally, section 6.5
discusses a technique for test selection based on specification selection: instead of de-
riving a lot of test cases and selecting from them, a specification is transformed so
that only a limited number of test cases is generated. This technique is elaborated for
test case generation from specifications based on labelled transition systems using the
implementation relation conf.

6.2 A Framework for Test Selection

In this section a test selection framework is presented. The presentation is independent
from any specification formalism. The assumptions and notations of section 2.5 are
used: specifications and implementations can be modelled by a specification formalism
LFDT , conformance of implementations with respect to specifications is expressed by an
implementation relation ≤R on LFDT , tests are given in a test notation LT , passing a
test is defined by a relation passes ⊆ LFDT × LT , with the extra notation as in 2.8.

In this section we consider test selection for a given specification S ∈ LFDT , and we
restrict test suites to a finite universe of test cases K ⊆ LT : Π ∈ P(K). K is assumed to
be sound with respect to S: the test cases in K will not reject correct implementations
(definition 2.9). K could for instance be a complete set of test cases derived from S
using a test derivation algorithm, but which is too large to be executed economically.

The test selection problem now consists of selecting a subset of K that is in some sense
optimal. Optimality will be decomposed and formalized by introducing the value and
the cost of a test suite.

6.2.1 Value Assignment

As has been argued in the introduction, test cases are selected on the basis of mostly
informal grounds. To allow reasoning about test selection and related issues in a formal
model, we must represent such knowledge separately, at a suitable level of abstraction.



6.2. A Framework for Test Selection 151

We propose to do this by defining the relative weight of tests suites based on the external
knowledge at the disposal of the test selector. To do this properly we must make sure
that such measures for test suites are consistent with their testing capabilities. In
particular, we want that test suites that reject the same set of implementations are
treated as being equally interesting. The required notion of testing power is given in
the following definition (cf. example 3.24).

fails 1 R
S

fails 2
FDT

Figure 6.1: The relation ≤Π: Π1 ≤Π Π2.

Definition 6.1
For Π1, Π2 ∈ P(K) we define

Π1 ≤Π Π2 =def {I ∈ LFDT | I fails Π1} ⊆ {I ∈ LFDT | I fails Π2}

Π1 ≈Π Π2 =def Π1 ≤Π Π2 and Π2 ≤Π Π1

When Π1 ≤Π (≈Π)Π2 holds, we say that Π1 has less (equal) testing power than (as) Π2

(in LFDT ).

2

The testing power of test suites is compared by comparing their sets of detected, erro-
neous implementations {I ∈ LFDT | I fails Π} : the larger this set the more powerful a
test suite is (figure 6.1).

Having introduced a way for comparing the testing power of test suites, we can define
their value by way of valuations, i.e. mappings from test suites to weights, that respect
the preorder ≤Π.



152 Chapter 6. Test Selection

Definition 6.2
A valuation of P(K) is a function v : P(K) → R≥0 such that for all Π1, Π2 ∈ P(K)

Π1 ≤Π Π2 implies v(Π1) ≤ v(Π2) (6.1)

2

It follows that for all valuations v and test suites Π1, Π2 ∈ P(K) if Π1 ≈Π Π2 then
v(Π1) = v(Π2).

The choice of the set of weights in definition 6.2, the set of non-negative reals, is merely
a convenient one, and we could have chosen another, e.g. the set of natural numbers.

The first question to be asked now, of course, is how to define suitable valuations. This
question has two components. First, how does one establish the proper value v(Π)
given a Π ∈ P(K), and second, how to make sure that property (6.1) is fulfilled. We
concentrate on the latter aspect first. The first aspect is discussed in the next two
sections.

Having related the testing power of a test suite to its set of detected, erroneous imple-
mentations, it is natural to relate also the value of a test suite to such sets.

Definition 6.3
A valuation of P(LFDT ) is a function v : P(LFDT ) → R≥0 such that for all c1, c2 ∈
P(LFDT )

c1 ⊆ c2 implies v(c1) ≤ v(c2) (6.2)

2

Proposition 6.4
If v : P(LFDT ) → R≥0 is a valuation of P(LFDT ), then v : P(K) → R≥0, defined by

v(Π) =def v ( { I ∈ LFDT | I fails Π } )

is a valuation of P(K).
2

Now that we have reallocated the problem of finding valuations, we must study ways
to find and define such mappings for sets of (erroneous) implementations. We study
three methods: representative error cases, error equivalence, and test purposes.

Representative Error Cases

One way to ensure the validity of (6.2), is to define v in the following manner. Let
{e1, . . . , en} ⊆ LFDT be a set containing specifications of typical error cases (figure 6.2),
and assign to each a weight w(ei) (1 ≤ i ≤ n) according to its gravity. The value of a
subset of LFDT can then be defined as the sum of the weights of all error cases that are
contained in it, or, equivalently, the value of a test suite Π is the sum of the weights of
all error cases that fail it.



6.2. A Framework for Test Selection 153

e3

2
e

1e
R

S

FDT

Figure 6.2: Representative error cases.

Definition 6.5
Let E ⊆ LFDT be finite, and w : E → R≥0 then wr : P(LFDT ) → R≥0 is defined by

wr(c) =def Σ{w(e) | e ∈ E and e ∈ c}

2

Proposition 6.6
For all finite E ⊆ LFDT and w : E → R≥0, wr is a valuation of P(LFDT ), and wr is a
valuation of P(K).

2

e3

2
e

1e

R
S

FDT

Figure 6.3: Error cases that are not representative.

The above method provides a rather practical means for establishing valuations, but
merits some further investigation as it may produce unintended results, when not used
carefully. First of all, we must establish that the error cases are in some sense repre-
sentative of all the classes of errors that can occur in an implementation. Secondly, we
must make sure that some classes of errors are not unintentionally overrepresented, i.e.
different error cases should represent different error classes. As the total effective weight
assigned to an error class is the sum of the weights of the represented error cases in that
class, having more than one error case out of an error class could produce misleading
results (figure 6.3).



154 Chapter 6. Test Selection

Error Equivalence

To obtain a more homogeneous valuation of P(LFDT ) we can define a partition over
P(LFDT ), so that from each partition class containing erroneous implementations ex-
actly one error case is selected. By choosing a suitable partitioning of P(LFDT ) a better
spread of error cases is obtained.

But as the error cases were only introduced as a way to define valuations, we can skip
them and use the error classes themselves, i.e. assign weights to partition classes. To do
so we must be sure that the subsets of LFDT for which we wish to define a valuation, are
expressible in the partition, i.e. these subsets must be expressible as unions of partition
classes. The value of p ∈ P(LFDT ) can then be defined as the sum of the partition
classes that form p.

Definition 6.7
Let Ξ = {ξ1, . . . , ξn} be a finite partition of LFDT , then

1. c ⊆ LFDT is expressible in Ξ, if c =
⋃
{ξi ∈ Ξ | ξi ⊆ c}.

2. The set of subsets of LFDT that are expressible in Ξ is denoted by E(Ξ):

E(Ξ) =def { c ⊆ LFDT | c =
⋃

{ξi ∈ Ξ | ξi ⊆ c} }

3. Let w : Ξ → R≥0, then wp : E(Ξ) → R≥0 is defined by

wp(c) =def Σ{w(ξi) | ξi ⊆ c}
2

Proposition 6.8
For all w : Ξ → R≥0, wp is a valuation of E(Ξ).

2

The first natural partitioning of LFDT is induced by an equivalence relation based on K.
The idea is that partition classes are formed by error cases that cannot be distinguished
by any test suite in P(K).

Definition 6.9
For I1, I2 ∈ LFDT we define

I1 ≈K I2 =def ∀Π ∈ P(K) : I1 fails Π iff I2 fails Π

2

It is clear that ≈K is an equivalence relation over LFDT , and that the partition LFDT/≈K

is finite if K is finite. The relation ≈K is related to the notion of testing equivalence
((3.1) in section 3.2): two processes are equivalent if they cannot be distinguished by
any test. The difference between ≈K and ≈T is the class of test cases: ≈K depends on a
specification S, hence for each S another equivalence is defined. For ≈K the equivalence
class consisting of processes that pass all tests, contains all correct implementations of



6.2. A Framework for Test Selection 155

S, due to our assumption that K is sound. This class will normally be assigned value
0: rejection of implementations from this class is of no interest at all, on the contrary.

For any Π the set {I ∈ LFDT | I fails Π} is expressible in the partition LFDT/≈K, as
follows from the fact that LFDT/ ≈K gives the maximal resolution power that can be
realized with test suites in P(K). Hence the following proposition.

Proposition 6.10
For all u : LFDT /≈K→ R≥0, up : P(K) → R≥0 is a valuation of P(K).

2

Any valuation that is based on assigning weights to error cases can be defined as a
valuation based on assigning weights to the equivalence classes of ≈K.

Proposition 6.11
For all finite E ⊆ LFDT and w : E → R≥0 there exists a u : LFDT /≈K→ R≥0 such that
up = wr.

2

Test Purposes

By considering error classes in LFDT /≈K one obviously considers the maximal power of
resolution that can be realized with test suites in P(K). In a given case, however, one
will only require resolution in specific areas of LFDT , whereas one may be quite willing
to forget about possible distinctions that could be made in other places. If we somehow
want to take into account only those distinctions that are felt to be relevant in a given
situation we enter the domain of the test purposes. Informally, a test purpose is a
statement explaining the intention of the test case or test suite at hand (section 1.3.3).
We formalized it in section 2.2.3 as a requirement or predicate, for which a valid test
case or test suite is to be developed. Such a test purpose p can be identified with the
set of all implementations satisfying it:

p = { I ∈ LFDT | I sat p } ⊆ LFDT (6.3)

If p is a test purpose, i.e. a requirement that a correct implementation should satisfy,
then its negation expresses a failure. We call it a test failure, and denote it by fp:

fp = { I ∈ LFDT | I /sat p } ⊆ LFDT (6.4)

Let a set of test purposes P = {p1, . . . , pn} be given, then P defines an equivalence on
LFDT :

Definition 6.12
For I1, I2 ∈ LFDT we define

I1 ≈P I2 =def ∀p ∈ P : I1 sat p iff I2 sat p

2



156 Chapter 6. Test Selection

p

q

p and qp and not q

not p and not q

not p and q

FDT

Figure 6.4: Test purposes p and q.

It is clear that also ≈P is an equivalence relation over LFDT , and that the partition
LFDT/≈P is finite if P is finite.

The partition LFDT/≈P consists of at most 2n classes, one of which is the class of imple-
mentations that satisfy all test purposes. All other classes contain erroneous implemen-
tations: they have one or more of the failures in F = {f1, . . . , fn} = {notp1, . . . , notpn}.
Figure 6.4 gives an example for P = {p, q}: LFDT is partitioned into 4 classes; the class
(p and q) contains the correct implementations, implementations in (not p and q) have
failure fp while they satisfy q, implementations in (p and not q) have one failure fq, and
the class (not p and not q) contains implementations with two errors.

If we assign weights to each possible combination of failures, i.e. to each equivalence class
of LFDT/ ≈P , a value assignment for expressible subsets of LFDT follows immediately
from propositions 6.8 and 6.4.

Proposition 6.13
Let u : LFDT /≈P→ R≥0, then

1. up : E(LFDT/≈P ) → R≥0 is a valuation of E(LFDT/≈P );

2. Let E be the set of test suites for which the set of detected implementations is
expressible in LFDT / ≈P : E = {Π ⊆ K | {I | I fails Π} ∈ E(LFDT/ ≈P )}, then
up : E → R≥0 is a valuation for E.

2

Combining the definitions and propositions we come to a method for assigning val-
ues, based on test purposes, to test suites Π of which the set of detected erroneous
implementations is expressible in the partition induced by a given set of relevant test
purposes {p1, . . . , pn}:

1. assign a weight expressing the value of the rejection of each exhaustive combination
of failures, i.e. define a u : LFDT /≈P→ R≥0;

2. determine up following definition 6.7;

3. according to proposition 6.13 we can take up as a valuation for each Π with {I |
I fails Π} expressible in LFDT /≈P .



6.2. A Framework for Test Selection 157

Coverage

The coverage of a test suite can be seen as the extent to which the purpose of testing
is approximated. Having related the value of a test suite Π to the subset of detected,
erroneous implementations, it is the extent with which this set ‘covers’ the set of all
erroneous implementations (figure 6.5). It is, in other words, the normalization of
valuations: it is the ratio between the detected failures (by Π) and the possible failures
(according to test purposes P )

P

Pnot

fails

FDT

Figure 6.5: The coverage of a test suite Π.

Definition 6.14
Let P be a finite set of test purposes, and v : P(LFDT ) → R≥0 a valuation. For
Π ∈ P(K) we define the coverage of P by Π under v (or v, see proposition 6.4) as

covv
P (Π) =def

v({I ∈ LFDT | I fails Π})

v({I ∈ LFDT | I /sat P})
=

v(Π)

v({I ∈ LFDT | I /sat P})

If the denominator equals 0, i.e. if rejection of an implementation not fulfilling the test
purpose P is of no value, then we define cov v

P (Π) = 1 for every Π. If the valuation v
is known from the context, or is irrelevant we write simply covP (Π).

2

6.2.2 Cost Assignment

The final ingredient that we introduce is a notion of cost for test suites. This is quite
straightforward: our only requirement is that cost increases with size.

Definition 6.15
A cost assignment of P(K) is a function c : P(K) → R≥0 such that for all Π1, Π2 ∈ P(K)

Π1 ⊆ Π2 implies c(Π1) ≤ c(Π2)

2



158 Chapter 6. Test Selection

The requirement in definition 6.15 is easily satisfied. It suffices, for example, to define
c on the basis of a cost function k : K → R≥0 by putting

c(Π) = Σ{k(t) | t ∈ Π} (6.5)

The reason that we do not take (6.5) as the basis of the definition is that the cost of
executing a test case in a test suite Π may in general depend on the other test cases
with which it is combined.

Having come at the end of this section, we may now formulate the formal problem of test
selection for a given set of test purposes P as selecting Π ∈ P(K) maximizing covP (Π)
while minimizing c(Π). Such optimization problems can, of course, be formulated under
further constraints, such as the requirement that covP (Π) must attain at least some
minimal value and/or c(Π) must not exceed some maximal cost.

6.3 Probabilities as Valuations

In the previous section the basic requirements for valuations have been identified, and it
was indicated how to relate valuations to failures that a test suite detects. In this section
a method to define a valuation is given that fulfils these requirements, as an application
of the formal framework in the previous section. The method works from the intuition
that identifies the value of a test suite with the probability that a non-conforming imple-
mentation is detected. This probability is proportional to the probability of occurrence
of the failures that are detected by that test suite. This leads to defining the value of
a test suite as the probability that the test failures that it detects, occur.

Consider the occurrence of an implementation I as a stochastic experiment with possible
outcome in LFDT . Let c ⊆ LFDT , then by

Pr[I ∈ c]

we denote the probability that an arbitrary implementation I ∈ c. In the same way

Pr[I ∈ {I | I fails Π}] = Pr[I fails Π]

is the probability that test suite Π detects an erroneous implementation. This proba-
bility can be used in a straightforward way to define the value of a test suite:

v(Π) = Pr[I fails Π] (6.6)

The function v thus defined is a valuation:

Suppose Π1 ≤Π Π2

then {I ∈ LFDT | I fails Π1} ⊆ {I ∈ LFDT | I fails Π2}
implies Pr[I ∈ {I ∈ LFDT | I fails Π1}] ≤ Pr[I ∈ {I ∈ LFDT | I fails Π2}]
implies v(Π1) ≤ v(Π2)



6.4. Elaborated Example 159

The coverage of a test suite Π with respect to a test purpose P in a probabilistic
setting can be given intuitively as: the probability that a failing implementation will
be detected by Π. This can be formalized by the conditional probability

Pr[I fails Π | I /sat P ]

=
Pr[I fails Π and I /sat P ]

Pr[I /sat P ]

= (∗ using soundness of Π ⊆ K ∗)

Pr[I fails Π]

Pr[I /sat P ]

This is equal to the coverage according to the previous section (definition 6.14):

covP (Π) =
v({I ∈ LFDT | I fails Π})

v({I ∈ LFDT | I /sat P})
=

Pr[I fails Π]

Pr[I /sat P ]

6.4 Elaborated Example

In this section the framework of section 6.2 and the valuation function of section 6.3 are
applied to test suites generated from a simple labelled transition system specification.

For LFDT we have the class of labelled transition systems LTS (section 1.4); for the
implementation relation conf is chosen (definition 3.12); passes is defined by defini-
tion 3.25. The predicates after σ must A and after σ refuses A over LTS are
used to express test purposes and test failures (definition 3.4).

r r
r

r
�

��@
@@

S

c

a b
r
r

T1

a

pass

fail r

r
r

T2

b

c
pass

fail

fail r r
r

r
�

��@
@@

T3

c

a

pass

pass

b
fail

fail

Figure 6.6: Specification S and test cases in K.

We consider the specification S in figure 6.6 with the test cases K = {T1, T2, T3}.
These test cases can for instance be obtained using algorithm 4.11. The test suite K is
complete for S with respect to conf, and K contains only three elements, so we could
execute them all. However, suppose we are allowed, e.g. due to cost constraints, to
execute only one test case; which one do we choose?



160 Chapter 6. Test Selection

In order to compare the testing power of these test cases we will discuss three possible
valuation functions: a valuation based on representative error cases, a valuation based
on the equivalence ≈K, and a valuation based on test purposes and the probability that
a non-conforming implementation is detected.

Representative Error Cases

The first possibility for a valuation mentioned in the previous section is to choose
representative error cases e1, . . . , en, and to assign weights to these error cases. A
valuation can be defined as in proposition 6.4 and definition 6.5. We choose the error
cases as in figure 6.7.

r
r �
��

a r
r
r���@

@@
a b

r

r
r@

@@

c

b

e1 e2 e3

Figure 6.7: Representative error cases.

If we assign weights to e1, e2, e3 according to the number of ‘forgotten’ transitions,
w(e1) = 2, w(e2) = 1, w(e3) = 1, we obviously get:

v({T1}) = w(e3) = 1
v({T2}) = w(e1) + w(e2) = 2 + 1 = 3
v({T3}) = w(e2) = 1

v({T1, T2}) = w(e1) + w(e2) + w(e3) = 2 + 1 + 1 = 4
v({T1, T2, T3}) = w(e1) + w(e2) + w(e3) = 2 + 1 + 1 = 4

So, according to this valuation, T3 is superfluous: {T1, T2} has the same value as the
maximal possible value v({T1, T2, T3}). If the costs of executing a test case would allow
us to execute only one test case, T2 is the preferred one.

Error Equivalence

The finest possible distinctions between different non-conforming implementations are
given by the equivalence ≈K. After some calculation 6 equivalence classes are found, one
of which is the class of correct implementations (c0). Representatives of each class are
given in figure 6.8. The sets given in the nodes in these trees represent failures: these
sets of actions are refused by the implementation ( I after σ refuses A ) while they
may not be refused according to the specification ( S after σ must A ). According to



6.4. Elaborated Example 161

r r
r

r
�

��@
@@

ba

c

r r
r

r
�

��@
@@

ba

c

r r
r

r
�

��@
@@

ba

c

r r
r

r
�

��@
@@

ba

c

r r
r

r
�

��@
@@

ba

c

r r
r

r
�

��@
@@

ba

c

{a} {b}

{c}

{a}{b}{a, b}{a}{b}

c0 c1 c2

c3 c4 c5

Figure 6.8: ≈K equivalence classes.

the definition of conf (definition 3.12) such a combination of σ and A is a failure in the
implementation.

The equivalence classes rejected by the test cases T1, T2, T3 are:

T1 detects : c1 c3 c4

T2 detects : c2 c3 c4 c5

T3 detects : c4 c5

If we assign equal weight to all detected classes ci, w(ci) = 1 for 1 ≤ i ≤ 5, we get:

v({T1}) = 3
v({T2}) = 4
v({T3}) = 2
v({T1, T2}) = 5
v({T1, T3}) = 4
v({T1, T2, T3}) = 5

Also with this valuation v({T1, T2}) is equal to v({T1, T2, T3}); test case T3 does not
contribute to the value of this test suite. Note that T3 does have influence on ≈K: it
discriminates between c3 and c4.

More sophisticated assignments of weights to equivalence classes are possible, e.g. count-
ing the number of erroneous refusals in the different error classes:
w(c1) = 1 ({a} is refused), . . ., w(c4) = 3 ({a}, {b}, {a, b} are refused), etc.



162 Chapter 6. Test Selection

Probabilistic Valuation

A more sophisticated way to assign values to test suites is by taking the probability
that an implementation is rejected, as explained in section 6.3.

In order to assign probabilities to the occurrence of implementations we determine the
probability for occurrence of particular failures. The probability for occurrence of a
particular implementation is equal to the probability that a particular combination of
failures occurs.

If we have an implementation in which n failures, f1, . . . , fn, can occur, with respective
probabilities α1, . . . , αn, then the probability that an implementation has the failures
f1 and f2, and no other failures is:

α1 · α2 · (1 − α3) · . . . · (1 − αn) (6.7)

From probability theory (e.g. [Tri82]) it is known that this is only valid if the failures
are independent. Two failures are independent if they can occur independently in
implementations, i.e. if one of them does not imply the other. This can be related
to logical independence of a set of failures, defined in (2.28) in section 2.4.4: a set
of failures can be considered independent if the corresponding set of test purposes is
independent.

Remark 6.16
In fact, logical independence is a minimal requirement for independence of probabilities.
Using logical independence we only require that for each possible failure an implemen-
tation can be made that has exactly that failure and no other failures. We neglect
that in the implementation process logically independent failures are usually related,
e.g. it is more likely that the addition 34 + 28 is incorrectly implemented, if 34 + 27 is
also incorrectly implemented. However, we consider these possible failures independent,
since it is possible that 34 + 27 is implemented incorrectly, while 34 + 28 is correctly
implemented.

2

For labelled transition systems with conf, requirements, and thus also test purposes,
are expressed in Lmust (section 3.4.1). This implies that test failures, negations of test
purposes, are expressed in Lref (proposition 3.5.1). Logical independence for sets of
requirements in Lmust was investigated in proposition 3.32.

Now considering our example specification S of figure 6.6 we can derive the following
set of test purposes PS. Note that in this case the set of test purposes is complete, i.e.
I conf S if and only if I sat pi for i = 1, 2, 3.

PS = { after ǫ must {a} (p1)
after ǫ must {b} (p2)
after b must {c} } (p3)



6.4. Elaborated Example 163

The corresponding failures are the negations of the test purposes.

FS = { after ǫ refuses {a} (f1)
after ǫ refuses {b} (f2)
after b refuses {c} } (f3)

It follows easily from proposition 3.32 that these failures are independent. So, analogous
to (6.7), the probability that an implementation has failures f1 and f3 and satisfies test
purpose P2 is

Pr[I sat {f1, p2, f3}] = α1 · (1 − α2) · α3

Considering test purposes and test failures as sets ((6.3) and (6.4)), f1 ∩ p2 ∩ f3 is an
element of LTS/ ≈PS

. Analogously we can calculate weights for the other elements
of LTS/ ≈PS

. It follows that we have a weight assignment for LTS/ ≈PS
, which,

according to proposition 6.13.1, can be extended to a valuation for subsets of LTS that
are expressible in LTS/ ≈PS

. And following proposition 6.13.2 we have a valuation
for test suites. In figure 6.9 weights w for the elements of LTS/≈PS

are given, where
α1 = α2 = α3 = 0.1.

P1&P2&P3
= ~F1&~F2&~F3

0.729

F1&F2&~F3

F1&~F2&F3~F1&F2&F3 ~F1&~F2&F3

F1&F2&F3
0.001

0.081 0.081

0.081

0.009 0.009

0.009

P1 P2

P3

Figure 6.9: Weight assignment w for LTS/≈PS

To calculate the value for the test suite {T1} we have

v ( {T1} )
= (∗ proposition 6.13.2 ∗)

wp ( {T1} )
= (∗ proposition 6.4 ∗)

wp ( {I | I fails {T1}} )
= (∗ definition 6.7.3 ∗)

Σ{w(ξi) | ξi ⊆ {I | I fails {T1}} }
= w(f1 ∪ f2 ∪ f3) + w(f1 ∪ f2 ∪ p3) + w(f1 ∪ p2 ∪ f3) + w(f1 ∪ p2 ∪ p3)
= Pr[I sat {f1, f2, f3}] + Pr[I sat {f1, f2, p3}]

+Pr[I sat {f1, p2, f3}] + Pr[I sat {f1, p2, p3}]
= (∗ figure 6.9 ∗)

0.001 + 0.009 + 0.009 + 0.081
= 0.100



164 Chapter 6. Test Selection

Π {I | I fails Π} v(Π) covPS
(Π) = v(Π)

1−Pr[I sat PS ]

{T1} f1 0.100 0.369
{T2} f2 ∪ f3 0.190 0.701
{T3} f3 0.100 0.369
{T1, T2} f1 ∪ f2 ∪ f3 0.271 1.000
{T1, T3} f1 ∪ f3 0.190 0.701
{T1, T2, T3} f1 ∪ f2 ∪ f3 0.271 1.000

Table 6.1: Value and coverage of example test suites.

The values and coverages of some test suites are given in table 6.1. Also for this
valuation T2 is the most powerful test case, and the suite {T1, T2} has the same testing
power as {T1, T2, T3}. An interesting exercise would be to vary the values of αi with
∆α, in order to see how these qualitative results depend on the values chosen for αi.
This analysis is left to the reader.

6.5 Test Selection by Specification Selection

Test selection was introduced in section 6.1 as finding a subset of an (automatically)
generated set of test cases that is in some sense optimal. The previous sections mainly
dealt with formalizing optimality. This section discusses techniques for finding subsets
of test suites: given S, ≤R, and ΠR, determine a Π′ ⊆ ΠR(S) (figure 6.10). The
obvious two step technique of first generating all possible test cases and then making
a selection from this set, may be impossible (if the generated test suite is infinite), and
is at least undesirable. Instead of generating too many test cases, and selecting from
them, one could try to avoid this overproduction, i.e. deriving Π′ directly. This can be
done by taking another test derivation algorithm Π′

R, such that Π′
R(S) ⊆ ΠR(S), or

by transforming S into S ′, such that ΠR(S ′) ⊆ ΠR(S) (figure 6.10). If ΠR is sound, a
necessary requirement for correctness of Π′

R and S ′ is soundness of Π′
R(S) and ΠR(S ′)

respectively.

An easy way to define a test derivation Π′
R is by taking another implementation relation

≤R′ with corresponding sound test derivation ΠR′ . It is easily checked that if the
relation ≤R′ is weaker than ≤R the soundness criterion is fulfilled.

Proposition 6.17
Let ΠR and ΠR′ be sound test derivations for the implementation relations ≤R and ≤R′

respectively. If ≤R ⊆≤′
R then ΠR′ is sound for ≤R.

2



6.5. Test Selection by Specification Selection 165

-

?s
-

?

S Π

S′ Π′

ΠR

Π′
R ⊆

ΠR

transfor-
mation

Figure 6.10: Test selection.

In this way a conf test suite can be seen as a selection of a ≤te test suite (chapters 3
and 4), and an asco, aconf, aconf n,≤tr(S), or ≤tr(QS ) test suite as a selection of a ≤O

test suite (chapter 5, proposition 5.55.1).

To describe the transformation of a specification S into S ′ with the purpose of doing
test selection we introduce a selection transformation ΘR.

Definition 6.18
Let ≤R be an implementation relation on LFDT . A selection transformation for ≤R is
a function ΘR : LFDT → LFDT , such that for all I, S ∈ LFDT :

I ≤R S implies I ≤R ΘR(S)

2

Proposition 6.19
If the test derivation ΠR is sound for ≤R, and ΘR is a selection transformation for ≤R,
then the test derivation ΠR◦ΘR is sound for ≤R.

2

The definition of a selection transformation only guarantees correctness, i.e. soundness,
for the resulting test suite. In order to obtain test suites that are useful, transformations
must be developed that take into account test selection criteria, e.g. those of the previous
sections.

Apart from avoiding overproduction of test cases, performing test selection by trans-
forming the specification has the advantage that information about the structure of the
specification can be used in the selection process. A specification written as a behaviour
expression has a certain structure in terms of how the specification is built from simpler
behaviour expression, such as processes composed in parallel or in sequence. If it can
be assumed that this structure is reflected in the structure of the implementation, it
can be used to guide the test selection process. For example, if a process is composed of
two independently parallel processes, it is not necessary to test all possible interleavings
of actions of those processes [HGD92, VSZ92]. Such structure information is lost if we
select from an (unordered) set of test cases. (cf. Specification styles in [VSSB91].)



166 Chapter 6. Test Selection

6.5.1 Specification Selection for Labelled Transition Systems

The approach of test selection by transformation of the specification is elaborated for
labelled transition systems with the implementation relation conf. The selection trans-
formation is expressed by the extension relation ext introduced in [BSS87].

Definition 6.20 ([BSS87])
S1 ext S2 =def traces(S1) ⊇ traces(S2) and S1 conf S2

2

Proposition 6.21
Any Θconf : LTS → LTS satisfying S ext Θconf (S) for all S ∈ LTS, is a selection
transformation for conf.

2

The restriction operator on labelled transition systems, introduced in [Mil80], defines
a selection transformation for conf. The restriction operator ·\A prunes all branches
labelled with an action in A ⊆ L.

Definition 6.22
The restriction operator on labelled transition systems, ·\A : LTS → LTS, with
A ⊆ L, is defined by the inference rule I1R:

S µ−→S ′

S\A µ−→S ′\A
, µ 6∈ A (I1R)

2

Proposition 6.23
For all A ⊆ L : S ext S\A

2

Propositions 6.21 and 6.23 give a method for doing test selection by transforming a
labelled transition system. Let S be the specification then we can select a set of actions
Lsel for which we wish to derive test cases. The set with which S is restricted is the
complement of Lsel . The transformed specification is then S ′ = S\(L\Lsel). Now
according to the propositions any sound test case derived from S ′ is also sound for S.

Example 6.24
Consider the specification S expressed in BEXv:

S = a?x; b!x; stop

The label set of S is {a, b} ×N. We select Lsel = {a, b} × {1, 10}:

S ′ = (a?x; b!x; stop)\( {{a, b} × (N\{1, 10} ) )
= a!1; b!1; stop 2 a!10; b!10; stop

A conf-complete set of test cases for S ′ is

{ a!1; b!1; stop,
a!10; b!10; stop }



6.5. Test Selection by Specification Selection 167

These two test cases can also be derived from S; moreover infinitely many others:

{ a!0; b!0; stop,
a!2; b!2; stop,
a!11; b!11; stop,
... }

2

Example 6.25
Now change S to: S = a?x; a!(x + x); stop

With Lsel = {a} × {1, 10}:

S ′ = a!1; stop 2 a!10; stop

with the test cases:
{ a!1; stop,

a!10; stop }

These test cases are correct, but not exactly what we would like to have: the second
transition is never tested.

2

The problem in example 6.25 is caused by the fact the values combined with the first
action a are necessarily the same as the values of the second action a. In the restriction
operator the set A of restricted actions is fixed. However, for a selection transformation
it is not necessary that A is fixed; A may vary for every state of S as long as for a given
σ A is the same for all S ′ ∈ S after σ . This is expressed by the generalized restriction
operator, which uses a function α : L∗ → P(L) for the set of restricted actions after σ.

Definition 6.26
The generalized restriction operator on labelled transition systems, ·\〈α, ρ〉 : LTS →
LTS, with α : L∗ → P(L), and ρ ∈ L∗, is defined by the inference rules I2R and I3R:

S a−→S ′

S\〈α, ρ〉 a−→S ′\〈α, ρ·a〉
, τ 6= a 6∈ α(ρ) (I2R)

S τ−→S ′

S\〈α, ρ〉 τ−→S ′\〈α, ρ〉
(I3R)

2

Proposition 6.27
For all α : L∗ → P(L) and ρ ∈ L∗ : S ext S\〈α, ρ〉

2

Corollary 6.28
For all S ∈ LTS, sound test derivations Πconf for conf, α : L∗ → P(L), and ρ ∈ L∗,

Πconf (S\〈α, ρ〉)

is a sound test suite for S with respect to conf. 2



168 Chapter 6. Test Selection

Example 6.29
Again example 6.25, now with:

α(ǫ) = L\( {a} × {1, 10} )
α(〈a, v〉) = L\( {a} × {2, 20} ) for any v ∈ N

From the transformed specification

S ′ = a!1; a!2; stop 2 a!10; a!20; stop

the following test cases are derived

{ a!1; a!2; stop,
a!10; a!20; stop }

2

r
r
r
r
r
r
r

�
��

�
�

��Q
Q

QQ
@

@@

a a

d g

cb

r
r

r

r
r

r
r

r
r r r r

r

r r r r
�

��@
@@�

��@
@@ �

��@
@@

�
�

��Q
Q

QQ

S

d

a

b

g

a a

cb

d e f g

b c
s1 s2

S′ T

pass pass

fail
c

fail

fail

fail

Figure 6.11: Invalid restriction.

Remark 6.30
The function α : L∗ → P(L) in the definition of the generalized restriction operator
cannot be replaced by a function on the states of the specification. Consider figure 6.11:
S ′ is obtained from S by restricting in state s1 to {b}, and in s2 to {c}. But the test
case T derived from S ′ is not sound for S.

2

6.6 Remarks on Extensions

This chapter has introduced in section 6.2 a formal framework for the study of the
problems of test selection on a high level of abstraction. There are many ways in which
the theory may be applied and refined. A few items are mentioned.

We used the probability that an erroneous implementation is detected, as the value of a
test suite. In doing that we assumed that detection of an error, i.e. passing a test case
can be expressed by the predicate passes. Due to nondeterminism in implementations
this is not always a correct assumption: in practice the verdict pass gives a probability



6.6. Remarks on Extensions 169

that an implementation does not have the failure tested by the test case (cf. remark 2.2
in section 2.2.6). This implies that we have probabilities on two levels: in passing a test
case, and in combining test cases into test suites. This inspires to study the problems
of test selection in a fuzzy logic for test purposes. This could also provide a link with
the work on probabilistic testing in [LS89, Chr90b].

For realistic applications the problem of test selection must be studied in the context of
an infinite number of test cases. Many of the definitions and solutions in this paper can
be adapted to cover the infinite case, but the resulting characterizations of valuations
are not effective. An obvious approach to this problem would seem to define a proper
notion of approximation for valuations. Also an infinite set of test purposes could be
considered, more specificly the full set of requirements S (sections 2.2.1 and 2.2.3).
A possible approach is to give a finite partioning of S. Each partition class defines
conjunction of test purposes. This has strong resemblance to a test group objective of
ISO9646 [ISO91a, part 1, section 3.6.6, and part 2, section 10.3].

Value and cost of a test suite were not related, implying that test selection is an opti-
mization problem over two variables. They can be related if the value is also expressed
as a cost, viz. the negative costs caused by a malfunctioning implementation in terms
of repair and damage [BDD+92]. The optimization problem can then be reformulated
as follows: select a test suite such that the cost of executing that test suite is equal
to the cost of expected repair and damage caused by failures not detected by that test
suite.

To obtain an optimal test suite by using the technique of specification selection, valua-
tions and costs must be related to the specification. If we could transform a valuation
of test suites to a valuation of (parts or aspects of) behaviour expressions, it would be
possible to use the optimization techniques of section 6.2 with the specification selection
technique of section 6.5.



170 Chapter 6. Test Selection



Chapter 7

Concluding Remarks

7.1 Conclusion

We have studied a formal approach to the problems of conformance testing. This has
been done independently from any specific specification formalism, as well as applied to
the specification formalism of labelled transition systems and formal languages based
on labelled transition systems.

We started our formal approach in chapter 2 by giving a formal interpretation to con-
cepts used in the current practice of protocol conformance testing, as reflected in the
standard ISO IS-9646 ‘Conformance Testing Methodology and Framework’ [ISO91a].
Chapter 2 did not present new theories, but it related existing, informal approaches in
conformance testing to existing formal theories in the realm of processes and concur-
rency.

The formal interpretation of the meaning of conformance in ISO9646 corresponds to a
logical specification of protocols, where specifications consist of sets of formulae, and
conformance corresponds to satisfaction of these formulae. It was shown that this notion
of conformance is closely related to the notion of conformance as a preorder relation on
a behavioural specification formalism, which is common in the theory of concurrency.
Such a relation was called an implementation relation. Next the test generation pro-
cess of ISO9646 has been discussed and formally interpreted. The derivation of test
purposes from conformance requirements corresponds to the selection of a finite set
of conformance requirements. A generic test case is a process that describes an ideal
environment that can decide about satisfaction of a test purpose. An abstract test case
describes a test that takes into account the test context in which the implementation is
tested. A test case is valid if it really tests the requirement for which it was developed.

Having developed a formal framework, the chapters 3, 4, 5, and 6 contribute to filling it
in with specific techniques, most of them based on the formalism of labelled transition
systems.

171



172 Chapter 7. Concluding Remarks

Chapter 3 elaborated on equivalence and implementation relations for labelled transi-
tion systems in the case that there is no test context. The relations testing equivalence
≈te , testing preorder ≤te , and conformance conf were discussed from the point of view
of observations: two processes are related if the observations that can be made using
all possible tests, can be related. To do this test cases and observations were formal-
ized. The relation conf was selected as a reasonable candidate to express correctness of
implementations with respect to specifications for the purpose of conformance testing
with synchronous communication. Different kinds of test cases and verdict assignments
were defined for it. Logical concepts were studied for conf-theories, where it turned out
that a logically independent conf-theory cannot always be found. In the development
of test derivation algorithms this problem was encountered in another form, preventing
the unique optimization of test suites.

In chapter 4 we studied algorithms that derive conf-test suites systematically from
a labelled transition system specification S. Also compositional test derivation from
simple languages with labelled transition system semantics was studied. A main issue
was representation of infinite sets of labels in a finite manner to obtain implementable
algorithms. Although the languages are rather simple they have many features also
appearing in more complicated languages, e.g. LOTOS [BB87, ISO89b].

In chapter 5 a test context was introduced, and its influence on conformance testing was
investigated. The difference between testers that communicate synchronously with the
implementation, and ones that communicate asynchronously, has been studied within
the realm of the specification formalism of labelled transition systems. To describe
asynchronous communication in terms of synchronous communication a queue operator
on labelled transition systems was introduced. This queue operator models a pair of
queues via which a labelled transition system communicates with its environment.

The theory of testing equivalence has been elaborated for this queue model. Queue
equivalence ≈Q has been defined as testing equivalence of processes in a queue con-
text. It is the smallest equivalence that can be distinguished by other processes when
communicating via queues. It was shown that queue equivalence can be character-
ized by two sets of traces of actions: the traces that a queue context can perform,
and the deadlock traces, which are the traces that may end in deadlock. Compared
to synchronous testing equivalence, where failure pairs, i.e. pairs of traces and sets of
actions are needed, this looks simpler. The traces of a queue context are indeed easily
characterized and related to the original specification, but the deadlock traces exhibit
more complex characteristics. They cannot easily be related to traces of the original
specification.

Using the queue model to formalize asynchronous communication it was shown that
the traditional synchronous testing theory for labelled transition systems outlined in
chapters 3 and 4 is not applicable when testing is asynchronous:

◦ the implementation relations used for synchronous testing are not testable in an
asynchronous context;

◦ test cases derived from specifications to be used for synchronous testing reject



7.2. Open Problems 173

correct implementations when testing asynchronously;

◦ implementations that have been tested synchronously according to conf may be-
have incorrectly in an asynchronous environment.

This means that the implementation relation, i.e. the notion of conformance, that can
be determined by testing, and the validity of test cases crucially depend on the test
method that is used for conformance testing.

We have proposed different implementation relations for asynchronous testing. The re-
lation ≤O has interesting theoretical properties, whereas for conformance testing aconf
and asco look more convenient. It was shown how to derive test cases for a class of
these relations. The transformation of the derived test cases to TTCN, the standardized
test notation [ISO91a, part 3], was briefly discussed. This transformation is possible for
asynchronous test cases as opposed to the synchronous test cases derived in chapter 4
due to the inherent asynchronous nature of TTCN.

Chapter 6 studied the problems of test selection. Using algorithms for test derivation,
e.g. those developed in chapters 4 and 5, usually too many test cases can be derived,
Execution of all derived test cases is unfeasible or too expensive. A framework for test
selection was introduced, which is very general, and only relies on the existence of a
predicate that asserts the (un)successful application of a test to an implementation.
The concept of valuation was introduced to represent the informal knowledge such as
experience and the use of heuristics, that in practice plays an important role in the
selection of tests. We have shown three methods for defining valuations, viz.

◦ assigning weights to the rejection of specific error cases,

◦ assigning weights to the equivalence classes, e.g. classes of ≈K, and

◦ assigning weights to combinations of test purposes/failures.

It was shown that a valuation based on a stochastic error model fits naturally within
the framework. A strong point of the framework is that it allows for an easy com-
bination of selection criteria based on the importance of failures and those based on
the probability of occurrence of failures. Finally, a technique to do test selection by
means of a transformation of the specification has been described and applied to la-
belled transition systems with the implementation relation conf. This technique avoids
the overproduction caused by first generating too many test cases, and then selecting
from them.

7.2 Open Problems

In the previous chapters a few open problems and suggestions for further research were
already discussed. In this section some other items are mentioned.

The formal framework The framework as presented in chapter 2, is by no means
complete, and some open questions remain. At some points simplifications and choices



174 Chapter 7. Concluding Remarks

for formalizations were made. These choices are open for further discussion, depending
on investigations whether the presented formalizations are workable ones. An example
is the relation between physical objects (the IUT) and formal objects (the specification,
requirements). We assumed that implementations and test application can be formally
modelled, and that observations calculated for the class of models are also valid for the
physical implementations. A more elaborate identification of the assumptions underly-
ing this approach is needed. Also the nature of the PIXIT as an interpretation function
between formal objects and concrete objects (section 2.2.9) needs further study.

For validation of the usefulness of the framework it should also be applied to other speci-
fication formalisms. A possibility is to investigate how finite state machine (FSM) based
formal test generation methods, like Unique Input/Output sequences, transition tours,
etc., fit within the presented framework [ADLU88, BU91, SL89]. Moreover, if these
FSM methods can be studied in the presented framework we have a handle to compare
FSM based test derivation with labelled transition system based test derivation.

Implementation relations It was discussed that it is important to decide about
the language of requirements LR for a particular application, or equivalently, to choose
an implementation relation, since a formal behaviour specification in itself does not
uniquely define the class of conforming implementations. There are many possibilities
for implementation relations; only a few of them were presented in this thesis. Although
implementation relations might differ for different applications, for any specific applica-
tion, implementers, testers, and users of systems need to have the same notion of what
constitutes a conforming implementation. At this moment there is no such agreement,
which leads to omitting the definition of an implementation relation in formal speci-
fications. For example, the formal specification of the Transport Protocol in LOTOS
does not define or refer to an implementation relation, which implies that this formal
specification in fact does not define what conforming implementations are [ISO92].

The question which implementation relation to use in the realm of conformance testing
is even more complicated, since it was shown in chapter 5 that the notion of conformance
that can be determined by testing depends on the test method or test context. The
question raised then is when conformance of an implementation to a specification can
be claimed. Can conformance be claimed with respect to a specification, or can it only
be claimed with respect to a specification together with a specific test context? Do we
require a strong, synchronous relation like ≤te for conformance, even when this relation
cannot be tested, or is a weaker, asynchronous relation like ≤O sufficient, knowing
that in a synchronous environment an implementation tested according to ≤O may
behave non-conforming? An important aspect is the eventual environment in which
an implementation will be used, i.e. whether the context is part of the system being
tested, or whether the context is only present during testing (cf. section 2.2.6). In the
second case we are interested whether I conforms to S, while in the first case we are
more interested in conformance of C[I] with respect to C[S].



7.2. Open Problems 175

Test derivation tools The algorithms for test derivation presented in chapters 4
and 5, turn out to be so complex, that they cannot be applied to any realistically sized
specification without the help of software tools. Hence, an important item for future
research is the implementation of the algorithms in tools.

Test case transformation based on contexts Synchronous test cases were derived
from the specification, while asynchronous test cases were derived from the combination
of specification and queue context. A topic of interest is to see whether test cases can be
transformed into each other, especially whether asynchronous test cases can be obtained
from the synchronous ones. More generally, transformations from generic into abstract
test cases can be investigated, based on a formal description of the test context. If
such transformations exist for certain contexts, we can use them to derive test cases.
Otherwise test cases for testing in context (abstract test cases) must be derived directly
from the composition of specification and test context, and this derivation must be
repeated for each new context.

Design for testability In Integrated Circuit design it is usual to consider the testa-
bility already in the design phase. Part of the functionality of an IC is especially
designed for the purpose of testing the chip when it has been realized. In some (natural
language) protocol specifications an analogous approach is taken: the specification pre-
scribes certain testing functions to be implemented. Usually these consist of making the
internal state of the implementation visible to the tester. It can be investigated whether
this approach can also be used for conformance testing based on formal specifications,
what the consequences are for the formal specifications, and whether this could lead to
a ‘test-oriented’ specification style (cf. [VSSB91]).

Testing and verification Verification of properties is mathematically complete and
formally correct, however, most of the current verification methods are only applicable
to small problems. Testing of properties is usually not complete, but it is applicable
to large problems. An approach can be investigated where testing and verification are
combined. Some properties of an implementation are tested, while others are verified;
test results can occur as steps in verification proofs, and testing can be performed on
the basis of proved properties.

Application Finally, the presented theory has been developed to be used in confor-
mance testing. Its application to conformance testing of a realistic protocol implemen-
tation should show its usefulness and shortcomings.



176 Chapter 7. Concluding Remarks



Appendix A

Mathematical Preliminaries

This appendix describes some mathematical concepts and introduces some notations.
The ingredients are some notations for sets, strings and traces, relations, equivalences,
partitions, orders, posets, and well-foundedness.

Notation for sets A set is a collection of elements. It can be denoted by enumerating
its elements: {a, b, c, . . .}, or by stating a property P that the elements satisfy: {x |
P (x)}. The empty set is denoted by ∅, x ∈ V expresses that x is an element of V , and
x 6∈ V expresses that x is not. In general, 6 through a symbol denotes its negation.
⊆ denotes the subset relation, including equality, while ⊂ is a strict subset, so not
including equality. Analogously for ⊇ and ⊃. Union ∪ and intersection ∩ are also
applicable to sets of sets:

⋃
V is the union of all elements in V (which must be a set of

sets). The difference of the sets V and W is denoted by V \W .

Two particular sets that are used, are N: the set of natural numbers, and R≥0: the set
of non-negative real numbers.

Power set The power set of a set V , P(V ), is the set consisting of all subsets of V .

Cartesian product Let V and W be sets, then the Cartesian product of V and W
is the set of all ordered pairs 〈x, y〉, such that x ∈ V and y ∈ W : V × W = {〈x, y〉 |
x ∈ V, y ∈ W}. Analogously the generalized Cartesian product V1 ×V2 × . . .×Vn is the
set of ordered n-tuples 〈x1, x2, . . . , xn〉 such that xi ∈ Vi for 1 ≤ i ≤ n. The notation
V n denotes the set of n-tuples in the generalized Cartesian product of V with itself.

A string, sequence, or trace is an element of V n for some n; V ∗ is the set of all strings
over V :

V ∗ =def

⋃

{V n | n = 0, 1, 2, 3, . . .}

The only string in V 0 is the empty string, denoted by ǫ. Moreover, we define:

177



178 Appendix A. Mathematical Preliminaries

◦ length: if a string σ ∈ V n then n is the length of σ, denoted by |σ|; note that
strings in V ∗ have finite length.

◦ concatenation: if σ1, σ2 ∈ V ∗, then σ1·σ2 is the string in V ∗ that is the concatenation
of σ1 and σ2; it is obtained by putting σ2 at the back end of σ1.

◦ restriction: let W ⊆ V , σ ∈ V ∗, then σ⌈W is the restriction of σ to the elements
of W :

◦ ǫ⌈W =def ǫ

◦ (x·σ)⌈W =def

{

x·(σ⌈W ) if x ∈ W
σ⌈W if x 6∈ W

Relation Let V and W be sets, then a relation R between V and W is a subset of
their Cartesian product: R ⊆ V × W . The element x ∈ V is related to y ∈ W by R
if 〈x, y〉 ∈ R; we also write xRy. If 〈x, y〉 6∈ R we write x /R y. Analogously, an n-ary
relation is a subset of V1 × V2 × . . . × Vn.

The inverse relation of R is R−1: 〈x, y〉 ∈ R iff 〈y, x〉 ∈ R−1.

A function f from set V to set W , f : V → W , is a relation with the property that
every a ∈ V relates to exactly one b ∈ W . This unique b is written as b = f(a). A
bijection is a function where every b ∈ W is related to exactly one a ∈ V .

Since relations are sets, the set operations can be applied: if R1,R2 ⊆ V × W , then
R1 ∩R2 is the relation on V defined by

〈x, y〉 ∈ R1 ∩R2 =def 〈x, y〉 ∈ R1 and 〈x, y〉 ∈ R2

A relation R on V is a subset of V × V . For such relations some important properties
are defined:

◦ reflexivity : ∀x ∈ V : xRx

◦ transitivity : ∀x, y, z ∈ V : xRy and yRz imply xRz

◦ symmetry : ∀x, y ∈ V : xRy implies yRx

◦ anti-symmetry : ∀x, y ∈ V : xRy and yRx imply x = y

◦ linearity : ∀x, y ∈ V : xRy or yRx

Equivalence An equivalence on V is a relation that is reflexive, transitive and sym-
metric.

For an equivalence relation E on V the equivalence class of an element a ∈ V , [a]E , is
the set of all elements in V that are equivalent to a:

[a]E =def {b ∈ V | aEb}

The set of all such classes is the quotient of V with respect to E :

V/E =def {[a]E | a ∈ V }



179

The quotient V/E forms a partition of V . A partition is a division of V in nonempty
subsets of V such that these subsets do not overlap, and the union of all subsets is equal
to V : Ξ = {ξ1, . . . , ξn} is a partition of V , if for all 1 ≤ i ≤ n: ∅ 6= ξi ⊆ V ,

⋃
Ξ = V ,

and ξi ∩ ξj 6= ∅ implies i = j.

Order An order on V is a relation that expresses the intuition of ordering the elements
of V , so that we can talk about elements being ‘smaller’ or ‘larger’ than other elements.
We denote an order relation by � , its inverse by � . Different kinds of orders can be
defined depending on their properties.

A preorder is reflexive and transitive; a partial order is an anti-symmetric preorder; a
linear or total order is a linear partial order. For these orders, because of reflexivity,
always x � x; in a strict order this is not the case: � is the strict order corresponding
to �: x � y =def x � y and x 6= y.

A set together with a partial order on it is called a poset : 〈V, �〉.

Once we have ‘smaller’ and ‘larger’ elements we can define minimal elements of a poset,
i.e. elements without smaller elements:

let W ⊆ V then m is a minimal element of W if m ∈ W and ∀x ∈ W : x 6 �m

Since uniqueness and existence of minimal elements is not guaranteed, it makes sense
to define a set of minimal elements:

min�(W ) =def {m ∈ W | m is minimal element of W}

The existence of minimal elements is important: the poset 〈V, �〉 is well-founded if all
nonempty subsets of V have a minimal element.

Well-foundedness means that there is no infinite sequence of elements that are strict
smaller, i.e. no sequence of different xi, such that

. . . � x3 � x2 � x1 � x0

Closure Let 〈V, �〉 be a poset, then the right-closure of a set W ⊆ V , rcl�(W ) or
W , is that set together with all elements that are larger:

W =def {y ∈ V | ∃x ∈ W : x � y}

A set is right-closed if it is equal to its right-closure.

If a set is extended with all elements that are larger than the elements of that set, then
the minimal elements are not affected:

Proposition A.1
Let 〈V, �〉 be a poset, then for A ⊆ V : min�(A) = min�(A).

2



180 Appendix A. Mathematical Preliminaries

Proof (proposition A.1)

⊆: Let m ∈ min�(A) then m ∈ A and ∀x ∈ A : x � m implies x = m.
We have to prove: m ∈ A and ∀y ∈ A : y � m implies y = m:

◦ m ∈ A implies m ∈ A;

◦ let y ∈ A with y � m, then ∃y′ ∈ A : y′ � y;
this implies y′ � y � m, hence y′ = m and y = m.

⊇: Let m ∈ min�(A) then m ∈ A and ∀x ∈ A : x � m implies x = m.
We have to prove: m ∈ A and ∀y ∈ A : y � m implies y = m:

◦ m ∈ A iff ∃m′ ∈ A : m′ � m; since m′ ∈ A : m′ = m, so m ∈ A;

◦ since A ⊆ A : ∀y ∈ A : y � m implies y = m.
2

Proposition A.1 can be used to represent a right-closed set by the set of its minimal
elements. However, minimal elements need not exist. Well-foundedness or finiteness
guarantees existence of minimal elements.

Proposition A.2
Let 〈V, �〉 be a poset, and A1, A2 ⊆ V , then A1 = A2 iff min�(A1) = min�(A2) , if

1. 〈V, �〉 is well-founded, or

2. A1, A2 are finite.
2

Proof (proposition A.2)

only if : A1 = A2

implies min�(A1) = min�(A2) (∗ proposition A.1 ∗)
implies min�(A1) = min�(A2)

if : Let x1 ∈ A1, then we have to prove x1 ∈ A2.
x1 ∈ A1 implies ∃x0 ∈ A1 : x0 � x1.
Define X0 = {x ∈ A1 | x � x0}; ∅ 6= X0 ⊆ A1 ⊆ V .
There exists a minimal element m0 ∈ X0, because

either: 〈V, �〉 is well-founded, hence every nonempty subset of V has a minimal
element,

or: A1 is finite, so X0 is finite, and every nonempty finite set has a minimal
element.

This m0 is also a minimal element of A1, because

both: m0 ∈ A1,

and: ∀y ∈ A1 : y � m0 implies y = m0:
suppose y � m0; with m0 � x0 (since m0 ∈ X0) and transitivity: y � x0, hence
y ∈ X0;
combining y � m0, y ∈ X0 with m0 is the minimal element of X0: y = m0.



181

So m0 ∈ min�(A1) = min�(A2), and since m0 � x0 � x1, using right-closedness of
A2 : x1 ∈ A2.
Symmetrically A2 ⊆ A1 is proved.

2

Analogous definitions and propositions can be given for the dual concepts maximal
element, max�(W ), co-well-foundedness, left-closure lcl�, and left-closedness.



182 Appendix A. Mathematical Preliminaries



Appendix B

Proofs

B.1 Chapter 1 (Introduction)

Proposition 1.10

1. 〈L∗,�〉 is a well-founded poset.

2. σ1 � σ2 and σ2 ∈ traces(S) imply σ1 ∈ traces(S)

3. traces(S) is prefix-closed, i.e. it is left-closed with respect to �

4. min�( traces(S) ) = {ǫ}
2

Proof (proposition 1.10)

1. � is a relation on L∗ that is reflexive, transitive, and anti-symmetric:

reflexivity : According to definition 1.9.2: take σ′ = ǫ.

transitivity : Suppose σ1 � σ2 and σ2 � σ3, with σ1 ·σ
′
1 = σ2 and σ2 ·σ

′
2 = σ3. Then

σ1 ·σ
′
1 ·σ

′
2 = σ3, thus σ1 � σ3.

anti-symmetry : Suppose σ1 � σ2 and σ2 � σ1, with σ1 ·σ
′
1 = σ2 and σ2 ·σ

′
2 = σ1.

Then σ1 ·σ
′
1 ·σ

′
2 = σ1, thus σ′

1 = σ′
2 = ǫ, and σ1 = σ2.

Moreover, � is well-founded:

∀T : ∅ 6= T ⊆ L∗ : ∃σm ∈ T : ∀σ ∈ T : σ 6≺ σm

Assume non-well-foundedness: ∃T0 : ∅ 6=T0⊆L∗ : ∀σm∈T0 : ∃ρm∈T0 : ρm≺σm.
This means that, since T0 6= ∅, there is σ0 ∈ T0 with: ∃ρ1 ∈ T0 : ρ1 ≺ σ0.
Again for ρ1: ∃ρ2 ∈ T0 : ρ2 ≺ ρ1, and so on. Hence there exists an infinite sequence
of different traces

. . . ≺ ρ4 ≺ ρ3 ≺ ρ2 ≺ ρ1 ≺ σ0

However, σ1 ≺ σ2 implies |σ1| < |σ2|, and since |σ0| ∈ N, this would imply the
existence of an infinite sequence of decreasing natural numbers. Such a sequence

183



184 Appendix B. Proofs

does not exist (well-foundedness of N), hence the sequence of traces does not exist,
hence the assumption of non-well-foundedness is not correct.

2. Since σ1 � σ2 implies ∃σ′ : σ2 = σ1 ·σ
′:

σ2 ∈ traces(S)

implies S
σ1·σ′

⇒

implies S
σ1
⇒

implies σ1 ∈ traces(S)

3. To prove: traces(S) = lcl�(traces(S)):

⊆: From the definition of lcl� using reflexivity of �.

⊇: Let σ ∈ lcl�(traces(S)), then there is σm ∈ traces(S) such that σ � σm. Using
proposition 1.10.2: σ ∈ traces(S).

4. ǫ is minimal: ǫ ∈ traces(S) (S
ǫ
⇒ for any S), and ∀σ ∈ traces(S) : σ 6≺ ǫ.

ǫ is the only minimal element: let σm be minimal element too, then:
∀σ ∈ traces(S) : σ � σm implies σ = σm. Since ǫ � σm for any σm: σm = ǫ.

2

Proposition 1.14

1. ≡ , ∼ , ≈ , and ≈tr are equivalences.

2. ≡ ⊂ ∼ ⊂ ≈ ⊂ ≈tr
2

Proof (proposition 1.14)

1. Directly from their definitions.

2. Directly from the facts that:

◦ the bijection f of 1.13.1 fulfils the requirements for R in 1.13.2;

◦ the relation R of 1.13.2. fulfils the requirements for R is 1.13.3, which can be
proved using induction on the lengh of σ;

◦ from 〈s01 , s02〉 ∈ R in 1.13.3 it follows that s01

σ
⇒ implies s01

σ
⇒ .

For inequalities:

r
rr
r

r
r
r

r
r

r
rr���@

@@ �
��@

@@
a a a

a

aτ τ
6≡

≈tr≈
6∼ 6≈

∼

2

Proposition 1.16

1. ≈tr = ≤tr ∩ ≥tr

2. ≤tr and ≥tr are preorders
2



B.1. Chapter 1 (Introduction) 185

Proof (proposition 1.16)
Directly from their definitions.

2



186 Appendix B. Proofs

B.2 Chapter 2 (A Formal Framework for Confor-

mance Testing)

B.2.1 Section 2.3 (Conformance as a Relation)

Proposition 2.3
Let conforms-to ⊆ LFDT ×LFDT be defined by (2.14):

BI conforms-to BS =def ∀r ∈ LR : BS spec r implies BI sat r

then

1. conforms-to is reflexive if and only if spec ⊆ sat

2. conforms-to is transitive if spec ⊇ sat

3. conforms-to is a preorder if spec = sat

4. conforms-to is an equivalence if spec = sat and negation is expressible in LR,
i.e. if

∀r ∈ LR, ∃ r ∈ LR, ∀B ∈ LFDT : B sat r iff not B sat r

2

Proof (proposition 2.3)

1. conforms-to is reflexive iff (∗ def. reflexivity ∗)
∀B ∈ LFDT : B conforms-to B iff (∗ (2.14) ∗)
∀B ∈ LFDT , ∀r ∈ LR : B spec r implies B sat r iff (∗ def. of ⊆ ∗)
spec ⊆ sat

2. We have to prove that for all B1, B2, B3 ∈ LFDT

if B1 conforms-to B2 and
B2 conforms-to B3 and

then B1 conforms-to B3

To prove this, let B1, B2, B3 ∈ LFDT , and r ∈ LR,
with B1 conforms-to B2 and B2 conforms-to B3, then
B3 spec r implies (∗ (2.14) applied to B2 conforms-to B3 ∗)
B2 sat r implies (∗ spec ⊇ sat ∗)
B2 spec r implies (∗ (2.14) applied to B1 conforms-to B2 ∗)
B1 sat r

Thus: B3 spec r implies B1 sat r
i.e. (∗ (2.14) ∗) B1 conforms-to B3

3. We have to prove that conforms-to is reflexive and transitive (definition of pre-
order, appendix A). Reflexivity follows from 2.3.1; transitivity from 2.3.2.

4. We have to prove that conforms-to is reflexive, transitive and symmetric (defini-
tion of equivalence). Reflexivity follows from 2.3.1; transitivity from 2.3.2.
For symmetry we have to prove that for all B1, B2 ∈ LFDT



B.2. Chapter 2 (A Formal Framework for Conformance Testing) 187

if B1 conforms-to B2

then B2 conforms-to B1

To prove this, let B1, B2 ∈ LFDT with B1 conforms-to B2, and let r ∈ LR, then
B1 spec r iff (∗ def. of r ∗)
notB1 spec r iff (∗ spec = sat ∗)
notB1 sat r implies (∗ contraposition (2.14) to B1 conforms-to B2 ∗)
notB2 spec r iff (∗ def. of r ∗)
B2 spec r iff (∗ spec = sat ∗)
B2 sat r

Thus: B1 spec r implies B2 sat r
i.e. (∗ (2.14) ∗) B2 conforms-to B1

2

Proposition 2.4
If ∀BI ∈ LFDT , ∃BS ∈ LFDT : {r ∈ LR | BS spec r} = {r ∈ LR | BI sat r},
and ∀BS ∈ LFDT , ∃BI ∈ LFDT : {r ∈ LR | BI sat r} = {r ∈ LR | BS spec r},
then

conforms-to is transitive if and only if spec ⊇ sat

2

Proof (proposition 2.4)
The if -part follows from proposition 2.3.2; the only if -part is proved by contraposition:

∃B0, r0 : B0 sat r0 and B0 /spec r0

implies ∃B1, B2, B3 : B1 conforms-to B2 and B2 conforms-to B3

and B1 /conforms-to B3

Take B2 equal to B0,
B1 such that {r ∈ LR | B1 sat r} = {r ∈ LR | B2 spec r}, (1)
B3 such that {r ∈ LR | B3 spec r} = {r ∈ LR | B2 sat r}, (2)

then B1 conforms-to B2 and B2 conforms-to B3;
using B0 sat r0 and (2) : r0 ∈ {r ∈ LR | B3 spec r},
using B0 /spec r0 and (1) : r0 6∈ {r ∈ LR | B1 sat r},
hence B3 spec r0 and B1 /sat r0, so B1 /conforms-to B3.

2

B.2.2 Proofs of Section 2.4 (Examples)

Proposition 2.6
Let conforms-to ⊆ LTS × LTS be defined by (2.14):

BI conforms-to BS =def ∀r ∈ LR : BS spec r implies BI sat r

and let Ltr , Ltr , spec, and sat be given in definition 2.5, then



188 Appendix B. Proofs

◦ For LR = Ltr : conforms-to = ≤tr

◦ For LR = Ltr : conforms-to = ≥tr
2

Proof (proposition 2.6)

◦ BI conforms-to BS

iff ∀r ∈ Ltr : BS spec r implies BI sat r
iff ∀σ ∈ L∗ : BS spec cannot σ implies BI sat cannot σ

iff ∀σ ∈ L∗ : BS

σ

6⇒ implies BI

σ

6⇒

iff ∀σ ∈ L∗ : BI

σ
⇒ implies BS

σ
⇒

iff traces(BI) ⊆ traces(BS)
iff BI ≤tr BS

◦ BI conforms-to BS

iff ∀r ∈ Ltr : BS spec r implies BI sat r
iff ∀σ ∈ L∗ : BS spec can σ implies BI sat can σ

iff ∀σ ∈ L∗ : BS

σ
⇒ implies BI

σ
⇒

iff traces(BS) ⊆ traces(BI)
iff BI ≥tr BS 2

Proposition 2.7
Derivation for Ltr as defined by (2.23), (2.24), and (2.25) is sound and complete.

2

Proof (proposition 2.7)

Soundness : We have to prove (2.26) for any S and r.
Let S ⊢ r, r = can σ0 , then either (2.23), (2.24), or (2.25):

(2.23): If I |= S, then, since can σ0 ∈ S, also I |= can σ0 , thus, the right-hand
side of (2.26) holds.

(2.24): This implies that σ0 = ǫ.

From definition 2.5 it follows that I |= can ǫ iff I
ǫ
⇒ ,

and this is true for any I, thus, the right-hand side of (2.26) holds.

(2.25): This implies that there is σ′
0 such that can σ0 ·σ

′
0 ∈ S.

If we have I |= S, then we also have I |= can σ0 ·σ
′
0 ,

which means (definition 2.5) I
σ0·σ′

0
⇒ .

According to proposition 1.10.2: I
σ0·σ′

0
⇒ implies I

σ0
⇒ ,

which means (definition 2.5) I |= can σ0 , thus, the right-hand side of (2.26)
holds.

Completeness : This is proven by contraposition, i.e. we have to prove that

if S 6⊢ r then ∃I ( I |= S and I 6|= r )

Let r = can σ0 ; we have to find I such that S is satisfied and can σ0 is not.
Take for I the labelled transition system with only branches from the initial state



B.2. Chapter 2 (A Formal Framework for Conformance Testing) 189

for every σ with can σ ∈ S: I = Σ{σ; stop | can σ ∈ S}. This I has the
required properties:

I |= S: I
σ
⇒ for all can σ ∈ S, thus (definition 2.5) I |= S.

I 6|= can σ0 : Suppose that I |= can σ0 , then I
σ0
⇒ , so there must be a branch

of I that makes this possible, implying that there exists σ′
0 such that I

σ0·σ′
0
⇒

with can σ0 ·σ
′
0 ∈ S.

Using (2.25) we would have S ⊢ can σ0 , which contradicts S 6⊢ r. Hence
I 6|= can σ0 .

2



190 Appendix B. Proofs

B.3 Chapter 3 (Implementation Relations)

B.3.1 Section 3.2 (Testing Equivalence)

Proposition 3.3.1
I1 ≈te I2 iff ∀t ∈ LTS : Obs(t, I1) = Obs(t, I2)

2

Proof (proposition 3.3.1)
We prove:

∀t ∈ LTS : Obs(t, I1) ⊆ Obs(t, I2) and Obs ′(t, I1) ⊆ Obs ′(t, I2)
iff ∀t ∈ LTS : Obs(t, I1) ⊆ Obs(t, I2)

(1)

from which the proposition follows directly.

only if : Directly.

if : Let t ∈ LTS, then directly Obs(t, I1) ⊆ Obs(t, I2).

Let σ ∈ Obs ′(t, I1), then t‖I1
σ
⇒ implying ∃I ′

1 : I1
σ
⇒ I ′

1 and ∃t′ : t
σ
⇒ t′ (2)

let σ = b1 ·b2 ·. . .·bm and tσ = b1; b2; . . . ; bm; stop,

then ∃I ′
1 ( tσ ‖I1

σ
⇒ stop‖I ′

1 and ∀a ∈ L : stop‖I ′
1

a

6⇒ )
implies (∗ definition 3.1.1 ∗)

tσ ‖I1 after σ deadlocks
implies (∗ definition 3.1.2 ∗)

σ ∈ Obs(tσ, I1)
implies (∗ premiss ∗)

σ ∈ Obs(tσ, I2)
implies tσ ‖I2 after σ deadlocks

implies tσ ‖I2
σ
⇒

implies I2
σ
⇒

implies (∗ using (2) ∗)

t‖I2
σ
⇒

implies σ ∈ Obs ′(t, I2)

So, σ ∈ Obs ′(t, I1) implies σ ∈ Obs ′(t, I2), which completes the proof of (1).

2

Lemma B.1
Let t, I ∈ LTS, and t[σ,A] ∈ LTM , then (using definition 3.4):

1. σ ∈ Obs(t, I) iff ∃t′ ( t
σ
⇒ t′ and I after σ refuses out(t′) )

2. σ ∈ Obs(t[σ,A], I) iff I after σ refuses A

2



B.3. Chapter 3 (Implementation Relations) 191

Proof (lemma B.1)

1. σ ∈ Obs(t, I)
iff (∗ definition 3.1.2 ∗)

t‖I after σ deadlocks
iff (∗ definition 3.1.1 ∗)

∃t′, I ′ ( t‖I
σ
⇒ t′ ‖I ′ and ∀a ∈ L : I ′‖ t′

a

6⇒ )
iff (∗ definitions 1.7 and 1.11.1 ∗)

∃t′, I ′ ( t
σ
⇒ t′ and I

σ
⇒ I ′ and ∀a ∈ out(t′) : I ′

a

6⇒ )
iff (∗ definition 3.4 ∗)

∃t′ ( t
σ
⇒ t′ and I after σ refuses out(t′) )

2. Applying lemma B.1.1, using definition 3.2:

t[σ,A]
σ
⇒Σ{a; stop | a ∈ A} and out(Σ{a; stop | a ∈ A}) = A

2

Proposition 3.3.2
I1 ≈te I2 iff ∀t ∈ LTM : Obs(t, I1) = Obs(t, I2)

2

Proof (proposition 3.3.2)
We prove:

∀t ∈ LTS : Obs(t, I1) ⊆ Obs(t, I2) iff ∀t ∈ LTM : Obs(t, I1) ⊆ Obs(t, I2) (1)

from which the proposition follows directly, using proposition 3.3.1.

only if : Directly from LTM ⊆ LTS.

if : Let t ∈ LTS,
then σ ∈ Obs(t, I1)
implies (∗ lemma B.1.1 ∗)

∃t′ ( t
σ
⇒ t′ and I1 after σ refuses out(t′) )

implies (∗ lemma B.1.2 ∗)

∃t′ ( t
σ
⇒ t′ and σ ∈ Obs(t[σ,out(t′)], I1) )

implies (∗ premiss ∗)

∃t′ ( t
σ
⇒ t′ and σ ∈ Obs(t[σ,out(t′)], I2) )

implies ∃t′ ( t
σ
⇒ t′ and I2 after σ refuses out(t′) )

implies σ ∈ Obs(t, I2)
2

Proposition 3.5

1. I after σ refuses A iff not ( I after σ must A )

2. if I after σ refuses A1 and A1 ⊇ A2 then I after σ refuses A2

3. if I after σ must A1 and A1 ⊆ A2 then I after σ must A2

4. I after σ deadlocks iff I after σ refuses L



192 Appendix B. Proofs

5. I after σ refuses ∅ iff σ ∈ traces(I)

6. I after σ refuses A iff σ ∈ Obs(t[σ,A], I)
2

Proof (proposition 3.5)

1. not ( I after σ must A )

iff not ( ∀I ′ ∈ I after σ : ∃a ∈ A : I ′ a
⇒ )

iff ∃I ′ ∈ I after σ : not ( ∃a ∈ A : I ′ a
⇒ )

iff ∃I ′ ∈ I after σ : ∀a ∈ A : I ′
a

6⇒
iff I after σ refuses A

2. I after σ refuses A1

iff ∃I ′ ∈ I after σ : ∀a ∈ A1 : I ′
a

6⇒

implies ∃I ′ ∈ I after σ : ∀a ∈ A2 : I ′
a

6⇒
iff I after σ refuses A2

3. I after σ must A1

iff ∀I ′ ∈ I after σ : ∃a ∈ A1 : I ′ a
⇒

implies ∀I ′ ∈ I after σ : ∃a ∈ A2 : I ′ a
⇒

iff I after σ must A2

4. Application of definitions 3.1.1 and 3.4.

5. I after σ refuses ∅

iff ∃I ′ ∈ I after σ : ∀a ∈ ∅ : I ′
a

6⇒
iff ∃I ′ ∈ I after σ
iff σ ∈ traces(I)

6. Lemma B.1.2.
2

Theorem 3.6

I1 ≈te I2 iff ∀σ ∈ L∗, ∀A ⊆ L : I1 after σ must A iff I2 after σ must A

2

Proof (theorem 3.6)

only if : Let σ ∈ L∗, A ⊆ L, then, using proposition 3.5.1:
I1 after σ refuses A

iff (∗ proposition 3.5.6 ∗)
σ ∈ Obs(t[σ,A], I1)

iff (∗ proposition 3.3.2 ∗)
σ ∈ Obs(t[σ,A], I2)

iff I2 after σ refuses A



B.3. Chapter 3 (Implementation Relations) 193

if : Using proposition 3.3.1, let t ∈ LTS, then
σ ∈ Obs(t, I1)

iff (∗ lemma B.1.1 ∗)

∃t′ ( t
σ
⇒ t′ and I1 after σ refuses out(t′) )

iff (∗ premiss ∗)

∃t′ ( t
σ
⇒ t′ and I2 after σ refuses out(t′) )

iff σ ∈ Obs(t, I2)
2

Proposition 3.7
≡ ⊂ ∼ ⊂ ≈ ⊂ ≈te ⊂ ≈tr

2

Proof (proposition 3.7)
We prove ≈ ⊆ ≈te , ≈te ⊆ ≈tr , ≈ 6= ≈te , and ≈te 6= ≈tr . The rest was proved in
proposition 1.14.2.

≈ ⊆ ≈te : Let B1 ≈ B2, then there exists R ⊆ der(B1) × der(B2) satisfying the re-
quirements of definition 1.13.3, with 〈B1, B2〉 ∈ R.
Let σ ∈ L∗, A ⊆ L, then

B1 after σ refuses A

implies ∃B′
1 ( B1

σ
⇒B′

1 and ∀a ∈ A : B′
1

a

6⇒ )
implies (∗ 〈B1, B2〉 ∈ R ∗)

∃B′
2 : B2

σ
⇒B′

2 and 〈B′
1, B

′
2〉 ∈ R

implies (∗ 〈B′
1, B

′
2〉 ∈ R implies ∀a ∈ A : B′

1

a
⇒ iff B′

2

a
⇒ ∗)

∃B′
2 : ∀a ∈ A : B′

2

a

6⇒
implies B2 after σ refuses A

Changing rôles of B1 and B2 proves the converse, and together they prove
B1 after σ refuses A iff B2 after σ refuses A .

≈te ⊆ ≈tr : Directly from theorem 3.6 and 3.5.5.

≈ 6= ≈te : Consider B1 = a; (i; b; stop2 i; c; stop) and B2 = a; b; stop2 a; c; stop.
B1 6≈ B2, but B1 ≈te B2.

≈te 6= ≈tr : Consider B1 = a; (b; stop2 c; stop) and B2 = a; b; stop2 a; c; stop.
B1 6≈te B2, but B1 ≈tr B2.

2



194 Appendix B. Proofs

B.3.2 Section 3.3 (Implementation Relations)

Theorem 3.9

I ≤te S iff ∀t ∈ LTS : Obs(t, I) ⊆ Obs(t, S)
iff ∀t ∈ LTM : Obs(t, I) ⊆ Obs(t, S)
iff ∀σ ∈ L∗, ∀A ⊆ L :

I after σ refuses A implies S after σ refuses A
iff ∀σ ∈ L∗, ∀A ⊆ L :

S after σ must A implies I after σ must A
2

Proof (theorem 3.9)
The first part is proved in equation (1) in the proof of proposition 3.3.1; the second
part is proved in equation (1) in the proof of proposition 3.3.2.

The third and fourth part are analogous to the proof of theorem 3.6; after σ must A
and after σ refuses A can be exchanged using proposition 3.5.1:

only if : Let σ ∈ L∗, A ⊆ L, then
I after σ refuses A

iff σ ∈ Obs(t[σ,A], I)
implies σ ∈ Obs(t[σ,A], S)
iff S after σ refuses A

if : Let t ∈ LTM , then
σ ∈ Obs(t, I)

iff ∃t′ ( t
σ
⇒ t′ and I after σ refuses out(t′) )

implies ∃t′ ( t
σ
⇒ t′ and S after σ refuses out(t′) )

iff σ ∈ Obs(t, S)
2

Proposition 3.10

1. ≈te = ≤te ∩ ≤−1
te

2. ≤te is a preorder.

3. ≤te ⊆ ≤tr 2

Proof (proposition 3.10)

1. Directly from theorems 3.6 and 3.9.

2. Directly from its definition.

3. Directly from theorem 3.9 and proposition 3.11.
2

Proposition 3.11
I ≤tr S iff ∀σ 6∈ traces(S), ∀A ⊆ L : S after σ must A implies I after σ must A

2



B.3. Chapter 3 (Implementation Relations) 195

Proof (proposition 3.11)
∀σ 6∈ traces(S), ∀A ⊆ L :
S after σ must A implies I after σ must A

iff (∗ propositions 3.5.5 and 3.5.3 ∗)
∀σ 6∈ traces(S), ∀A ⊆ L : I after σ must A

iff (∗ propositions 3.5.3 ∗)
∀σ 6∈ traces(S) : I after σ must ∅

iff (∗ propositions 3.5.5 ∗)
∀σ 6∈ traces(S) : σ 6∈ traces(I)

iff traces(I) ⊆ traces(S)
iff I ≤tr S

2

Proposition 3.13

1. ≤te = ≤tr ∩ conf

2. conf is reflexive, but not transitive.
2

Proof (proposition 3.13)

1. Directly from definition 3.12, theorem 3.9, and proposition 3.11.

2. That conf is reflexive, follows directly from its definition;
intransitivity of conf follows from e.g. B1 = a; stop2 c; stop, B2 = c; stop, and
B3 = a; b; stop2 i; c; stop: B1 conf B2, B2 conf B3, but B1 /conf B3.

2

Proposition 3.14
I conf S iff ∀t ∈ LTS : ( Obs(t, I) ∩ traces(S) ) ⊆ Obs(t, S)

iff ∀t ∈ LTS : ( Obs(t, I) ∩ traces(S) ) ⊆ Obs(t, S) and
( Obs ′(t, I) ∩ traces(S) ) ⊆ Obs ′(t, S)

2

Proof (proposition 3.14)
The first part is analogous to proposition 3.9:

only if : Let t ∈ LTS, then
σ ∈ Obs(t, I) ∩ traces(S)

iff ∃t′ ( t
σ
⇒ t′ and I after σ refuses out(t′) ) and σ ∈ traces(S)

implies ∃t′ ( t
σ
⇒ t′ and S after σ refuses out(t′) )

iff σ ∈ Obs(t, S)

if : Let σ ∈ traces(S), A ⊆ L, then
I after σ refuses A and σ ∈ traces(S)

iff σ ∈ Obs(t[σ,A], I) and σ ∈ traces(S)
implies σ ∈ Obs(t[σ,A], S)
iff S after σ refuses A



196 Appendix B. Proofs

The second part follows from the fact that ( Obs ′(t, I)∩traces(S) ) ⊆ Obs ′(t, S) always
holds: σ ∈ ( Obs ′(t, I) ∩ traces(S) )

implies (∗ definitions 1.7 and 3.1 ∗)

t
σ
⇒ and I

σ
⇒ and S

σ
⇒

implies σ ∈ Obs ′(t, S)
2

Proposition 3.15
Let I, S ∈ LTS, and let application of a must test t[σ,A] ∈ LTM to I, S be defined by:

applyC(t[σ,A], I) =def







pass if σ 6∈ Obs(t[σ,A], I)
and ∃a ∈ A : σ ·a ∈ Obs(t[σ,A], I)

inconclusive if σ 6∈ Obs(t[σ,A], I)
and ∀a ∈ A : σ ·a 6∈ Obs(t[σ,A], I)

fail if σ ∈ Obs(t[σ,A], I)

then

I conf S iff ∀t ∈ LTM : applyC(t, S) = pass implies applyC(t, I) 6= fail

2

Proof (proposition 3.15)

if : Let σ ∈ traces(S), A ⊆ L, such that S after σ must A ,
then: (∗ definition 3.4 ∗)

∀S ′ ∈ S after σ : ∃a ∈ A : S ′ a
⇒ and ∃S ′′ : S

σ
⇒S ′′

implies ∃a ∈ A, ∃S ′′, S ′′′ : S
σ
⇒S ′′ a

⇒S ′′′

implies (∗ definitions 1.7 and 3.2 ∗)

∃a ∈ A, ∃S ′′, S ′′′ : t[σ,A] ‖S
σ
⇒ t[ǫ,A]‖S ′′ a

⇒ stop‖S ′′′

and ∀b ∈ L : stop‖S ′′′
b

6⇒
implies (∗ definition 3.1.1 ∗)

∃a ∈ A : t[σ,A]‖S after σ ·a deadlocks
implies (∗ definition 3.1.2 ∗)

∃a ∈ A : σ ·a ∈ Obs(t[σ,A], S)
implies (∗ definition applyC ∗)

(∗ proposition 3.5.6 applied to S after σ must A ∗)
applyC(t[σ,A], S) = pass

implies (∗ premiss ∗)
applyC(t[σ,A], I) 6= fail

implies (∗ definition applyC ∗)
σ 6∈ Obs(t[σ,A], I)

implies (∗ proposition 3.5.6 ∗)
I after σ must A

only if : Let σ ∈ L∗, A ⊆ L, such that t[σ,A] ∈ LTM , then



B.3. Chapter 3 (Implementation Relations) 197

applyC(t[σ,A], S) = pass
iff (∗ definition applyC ∗)

σ 6∈ Obs(t[σ,A], S) and ∃a ∈ A : σ ·a ∈ Obs(t[σ,A], S)
implies (∗ proposition 3.5.6 and definition 3.1.2 ∗)

S after σ must A and
∃a ∈ A : t[σ,A] ‖S after σ ·a deadlocks

implies (∗ definition 3.1.1 ∗)

S after σ must A and ∃a ∈ A : t[σ,A]‖S
σ·a
⇒

implies (∗ definition 1.7 ∗)
S after σ must A and σ ∈ traces(S)

implies (∗ premiss ∗)
I after σ must A

implies (∗ proposition 3.5.6 ∗)
σ 6∈ Obs(t[σ,A], I)

implies applyC(t[σ,A], I) 6= fail
2

B.3.3 Section 3.4 (The Conformance Relation CONF)

Proposition 3.17
The implementation relation conf is compatible with the requirement language Lmust ,
specification relation specC, and satisfaction relation satC:

I conf S iff I satC specsC(S)

2

Proof (proposition 3.17)
I conf S

iff ∀σ ∈ traces(S), ∀A ⊆ L :
S after σ must A implies I after σ must A

iff ∀σ ∈ L∗, ∀A ⊆ L :

( S
σ
⇒ and S after σ must A ) implies I after σ must A

iff ∀σ ∈ L∗, ∀A ⊆ L :
S specC after σ must A implies I satC after σ must A

iff ∀r ∈ Lmust : S specC r implies I satC r
iff ∀r ∈ specsC(S) : I satC r
iff I satC specsC(S) 2

Proposition 3.22
Let testreqsN : LTS → P(Lmust) be defined by

testreqsN (t) =def { after σ must A | t after σ must L and

∃t′ ( t
σ
⇒ t′ and out(t′) ⊆ A ) }

then
I passesN t iff I satC testreqsN (t)



198 Appendix B. Proofs

2

Proof (proposition 3.22)

only if : Let σ ∈ L∗, A ⊆ L, such that after σ must A ∈ testreqsN (t), then
after σ must A ∈ testreqsN (t)

implies (∗ definition testreqsN (t) ∗)

t after σ must L and ∃t′ ( t
σ
⇒ t′ and out(t′) ⊆ A )

implies (∗ propositions 3.5.1 and 3.5.4 ∗)
not ( t after σ deadlocks ) and

∃t′ ( t
σ
⇒ t′ and out(t′) ⊆ A )

implies (∗ premiss ∗)

σ 6∈ Obs(t, I) and ∃t′ ( t
σ
⇒ t′ and out(t′) ⊆ A )

implies (∗ lemma B.1.1 ∗)

∀t′ ( t
σ
⇒ t′ implies I after σ must out(t′) ) and

∃t′ ( t
σ
⇒ t′ and out(t′) ⊆ A )

implies ∃t′ ( t
σ
⇒ t′ and out(t′) ⊆ A and I after σ must out(t′) )

implies (∗ proposition 3.5.3 ∗)
I after σ must A

iff I satC after σ must A

if : By contraposition:
I /passesN t

implies (∗ definition 3.20 ∗)
∃σ ∈ L∗ : σ ∈ Obs(t, I) and t after σ must L

implies (∗ lemma B.1.1 ∗)

∃σ ∈ L∗ : ∃t′ ( t
σ
⇒ t′ and I after σ refuses out(t′) )

and t after σ must L
implies (∗ definition testreqsN (t) ∗)

∃σ ∈ L∗, ∃t′ : after σ must out(t′) ∈ testreqsN (t)
and not ( I after σ must out(t′) )

implies ∃r = after σ must out(t′) ∈ testreqsN (t) : I /satC r
2

Proposition 3.23
Let S ∈ LTS, then the test suite

Πtr
conf

(S) =def { t ∈ LTS | traces(t) ⊆ traces(S), S passesN t }

is complete for conf-conforming implementations of S, i.e.

∀I ∈ LTS : I conf S iff I passesN Πtr
conf

(S)

2



B.3. Chapter 3 (Implementation Relations) 199

Proof (proposition 3.23)

soundness : Let I ∈ LTS, then we prove, using proposition 3.22:

I conf S implies ∀t ∈ Πtr
conf

(S), ∀r ∈ testreqsN (t) : I satC r

Let t ∈ Πtr
conf

(S), and r = after σ must A ∈ testreqsN (t), then
traces(t) ⊆ traces(S) and S passesN t

and ∃t′ ( t
σ
⇒ t′ and out(t′) ⊆ A )

implies (∗ proposition 3.22 applied to S ∗)
σ ∈ traces(S) and S after σ must A

implies (∗ premiss ∗)
I after σ must A

iff I satC r

exhaustiveness : We prove: ∀r ∈ Lmust : S specC r implies I satC r.
We use a modified version of a must test: u[σ,A] is a must test with for all states
that are reached with σ′ ≺ σ an extra branch τ ; stop.
Let r = after σ must A ∈ Lmust , then

S specC r

implies S
σ
⇒ and S after σ must A

implies ∃S ′ : S
σ
⇒S ′ and ∀S ′′ ( S

σ
⇒S ′′ implies ∃a ∈ A : S ′′ a

⇒ )
implies (∗ proposition 3.5.5 ∗)

A 6= ∅ and A′ = { a ∈ L | S
σ·a
⇒} 6= ∅ and A ∩ A′ 6= ∅

implies traces(u[σ,A∩A′]) ⊆ traces(S) and

∀S ′′ ( S
σ
⇒S ′′ implies ∃a ∈ A ∩ A′ : S ′′ a

⇒ )
implies traces(u[σ,A∩A′]) ⊆ traces(S) and S after σ must A ∩ A′

implies (∗ proposition 3.22 ∗)
traces(u[σ,A∩A′]) ⊆ traces(S) and S passesN u[σ,A∩A′]

implies (∗ definition Πtr
conf

(S) ∗)
u[σ,A∩A′] ∈ Πtr

conf
(S)

implies (∗ premiss ∗)
I passesN u[σ,A∩A′]

implies (∗ proposition 3.22.2 ∗)
I satC after σ must A ∩ A′

implies (∗ proposition 3.5.3 ∗)
I satC after σ must A

iff I satC r
2

Proposition 3.26
Let testreqsD : DLTS → P(Lmust) be defined by

testreqsD(t) =def { after σ must A | v( t after σ ) = fail
and out( t after σ ) ⊆ A }

then I passesD t iff I satC testreqsD(t)
2



200 Appendix B. Proofs

Proof (proposition 3.26)
Analogous to the proof of proposition 3.22:

only if : Let σ ∈ L∗, A ⊆ L, such that after σ must A ∈ testreqsD(t), then
after σ must A ∈ testreqsD(t)

implies (∗ definition testreqsD(t) ∗)
v( t after σ ) = fail and out( t after σ ) ⊆ A

implies (∗ premiss ∗)

σ 6∈ Obs(t, I) and t
σ
⇒ t after σ and out( t after σ ) ⊆ A

implies (∗ lemma B.1.1 ∗)

∀t′ ( t
σ
⇒ t′ implies I after σ must out(t′) )

and t
σ
⇒ t after σ and out( t after σ ) ⊆ A

implies I after σ must out( t after σ ) and out( t after σ ) ⊆ A
implies I after σ must A
iff I satC after σ must A

if : By contraposition:
I /passesD t

implies (∗ definition 3.25.2 ∗)
∃σ ∈ L∗ : σ ∈ Obs(t, I) and v( t after σ ) = fail

implies (∗ lemma B.1.1 ∗)

∃σ ∈ L∗ : ∃t′ ( t
σ
⇒ t′ and I after σ refuses out(t′) )

and v( t after σ ) = fail
implies ∃σ ∈ L∗ : I after σ refuses out( t after σ )

and v( t after σ ) = fail
implies ∃r = after σ must out( t after σ ) ∈ testreqsD(t) : I /satC r

2

Proposition 3.27
Let S ∈ LTS, then the test suite

◦ Πdet
conf

(S) =def { t ∈ DLTS | traces(t) ⊆ traces(S), S passesD t }

is complete for conf-conforming implementations of S.
2

Proof (proposition 3.27)
Analogous to the proof of proposition 3.23.2:

soundness : Let I ∈ LTS, then we prove, using proposition 3.26:

I conf S implies ∀t ∈ Πdet
conf

(S), ∀r ∈ testreqsD(t) : I satC r

Let t ∈ Πdet
conf

(S), and r = after σ must A ∈ testreqsD(t), then
traces(t) ⊆ traces(S) and S passesD t
and v( t after σ ) = fail and out( t after σ ) ⊆ A

implies (∗ proposition 3.26 applied to S ∗)
σ ∈ traces(S) and S after σ must A

implies (∗ premiss ∗)
I after σ must A

iff I satC r



B.3. Chapter 3 (Implementation Relations) 201

exhaustiveness : We prove: ∀r ∈ Lmust : S specC r implies I satC r.
Let r = after σ must A ∈ Lmust , then

S specC r

implies S
σ
⇒ and S after σ must A

implies A 6= ∅ and A′ = { a ∈ L | S
σ·a
⇒} 6= ∅ and A ∩ A′ 6= ∅

Let σ = b1 ·b2 ·. . .·bm, and let u ∈ DLTS be:

u =def b1; b2; . . . ; bm; Σ{a; stop | a ∈ A ∩ A′}

with v( u after σ′ ) = fail iff σ′ = σ,
then testreqsD(u) = { after σ must A′′ | A ∩ A′ ⊆ A′′ }, and it follows that:

traces(u) ⊆ traces(S) and S after σ must A ∩ A′

implies traces(u) ⊆ traces(S) and S satC testreqsD(u)
implies (∗ proposition 3.26 ∗)

traces(u) ⊆ traces(S) and S passesD u
implies u ∈ Πdet

conf
(S)

implies (∗ premiss: I passesD Πdet
conf

(S) ∗)
I passesD u

implies (∗ proposition 3.26 ∗)
∀A′′ ⊇ A ∩ A′ : I satC after σ must A′′

implies I satC after σ must A
iff I satC r

2

Proposition 3.31
Derivation for conf-theories T over the class of models LTS with the satisfaction rela-
tion satC is sound and complete, i.e.

T ⊢ r iff ∀I ∈ LTS : I satC T implies I satC r

2

Proof (proposition 3.31)

Soundness : Let I ∈ LTS, with I satC T , then
T ⊢ after σ must A

implies (∗ definition 3.30 ∗)
∃A′ ⊆ A : after σ must A′ ∈ T

implies ∃A′ ⊆ A : I satC after σ must A′

implies ∃A′ ⊆ A : I after σ must A′

implies I after σ must A
implies I satC after σ must A

Completeness : By contraposition. Let σ ∈ L∗, A ⊆ L, then we have to prove:

T 6⊢ after σ must A implies ∃I : I satC T and I /satC after σ must A

From the definition of ⊢:

T 6⊢ after σ must A iff ∀A′ ⊆ A : after σ must A′ 6∈ T (1)



202 Appendix B. Proofs

Let IL be the process that can always perform any action:

IL =def Σ{ a; IL | a ∈ L }

and let I ′
L be IL with the modification that the state ILafterσ , which can be writ-

ten as IL after σ = Σ{a; IL | a ∈ L}, is replaced by Σ{a; IL | a ∈ A} 2 i; Σ{a; IL |
a ∈ L\A}, then I ′

L has the required properties:

I ′
L satC T : IL satC after σ must A for any σ ∈ L∗ and ∅ 6= A ⊆ L. For I ′

L this
is changed only for all requirements after σ must A′ with ∅ 6= A′ ⊆ A.
These are exactly those requirements which are not in T according to (1),
hence I ′

L satC T .

I ′
L /satC after σ must A : I ′

L

σ
⇒Σ{a; IL | a ∈ L\A} and ∀a ∈ A : Σ{a; IL | a ∈

L\A}
a

6⇒ . Hence, I ′
L after σ refuses A .

2



B.4. Chapter 4 (Synchronous Testing) 203

B.4 Chapter 4 (Synchronous Testing)

B.4.1 Section 4.2 (Test Derivation for Labelled Transition Sys-
tems)

Proposition 4.3
Let S ∈ LTS, σ, σ1, σ2 ∈ L∗, A ⊆ L, then

1. choice S after σ =def Σ{ i; S ′ | S
σ
⇒S ′ }

≈te Σ{ i; S ′ | S
σ
→S ′ }

2. choice S after ǫ ≈te S

3. For σ1 ∈ traces(S) or σ2 6= ǫ:

S after σ1 ·σ2 must A iff ( choice S after σ1 ) after σ2 must A

4. choice S after σ1 ·σ2 ≈te choice ( choice S after σ1 ) after σ2

2

Proof (proposition 4.3)

1. Let U = {S ′ | S
σ
→S ′} , then, since S

σ
⇒S ′ iff ∃S ′′ : S

σ
→S ′′ ǫ

⇒S ′ , the
proposition is stated as:

Σ{ i; S ′ | ∃S ′′ ∈ U : S ′′ ǫ
⇒S ′ } ≈te Σ{ i; S ′ | S ′ ∈ U }

Let B1 = Σ{i; S ′ | ∃S ′′ ∈ U : S ′′ ǫ
⇒S ′} and B2 = Σ{i; S ′ | S ′ ∈ U}, then we have

to prove: ∀ρ ∈ L∗, A ⊆ L∗ : B1 after ρ refuses A iff B2 after ρ refuses A ,
which is equivalent to

∀ρ ∈ L∗, A ⊆ L∗ :

∃B′ : B1

ρ
⇒B′ and ∀a ∈ A : B′

a

6⇒ iff ∃B′ : B2

ρ
⇒B′ and ∀a ∈ A : B′

a

6⇒

Let ρ ∈ L∗, A ⊆ L, B′ such that B1

ρ
⇒B′, and distinguish between B′ = B1 (and

ρ = ǫ), and B′ 6= B1:

B′ = B1:
From the definitions of B1 and B2 it follows directly that
out(B1) = out(B2) = out(ΣU),

hence ∀a ∈ A : B1

a

6⇒ iff ∀a ∈ A : B2

a

6⇒ , and

∃B′ = B1 : B1
ǫ
⇒B′ and ∀a ∈ A : B′

a

6⇒

iff ∃B′ = B2 : B2
ǫ
⇒B′ and ∀a ∈ A : B′

a

6⇒



204 Appendix B. Proofs

B′ 6= B1:

∃B′ 6= B1 : B1

ρ
⇒B′ and ∀a ∈ A : B′

a

6⇒

iff ∃B′ : B1
τ−→

ρ
⇒B′ and ∀a ∈ A : B′

a

6⇒

iff ∃B′ : Σ{i; S ′ | ∃S ′′ ∈ U : S ′′ ǫ
⇒S ′} τ−→

ρ
⇒B′ and ∀a ∈ A : B′

a

6⇒

iff ∃B′, ∃S ′, ∃S ′′ ∈ U : S ′′ ǫ
⇒S ′ and S ′ ρ

⇒B′ and ∀a ∈ A : B′
a

6⇒

iff ∃B′, ∃S ′′ ∈ U : S ′′ ρ
⇒B′ and ∀a ∈ A : B′

a

6⇒

iff ∃B′ : Σ{i; S ′ | S ′ ∈ U} τ−→
ρ
⇒B′ and ∀a ∈ A : B′

a

6⇒

iff ∃B′ : B2
τ−→

ρ
⇒B′ and ∀a ∈ A : B′

a

6⇒

iff ∃B′ 6= B2 : B2

ρ
⇒B′ and ∀a ∈ A : B′

a

6⇒

2. choice S after ǫ

≈te Σ{i; S ′ | S
ǫ
→S ′}

= i; S
≈te S

For 3. and 4. we first prove for σ1 ∈ traces(S1) or σ2 6= ǫ:

S after σ1 ·σ2 = ( choice S after σ1 ) after σ2 (1)

S1 ∈ S after σ1 ·σ2

iff S
σ1·σ2

⇒S1

iff ∃S2 : S
σ1
⇒S2

σ2
⇒S1

iff ∃S2 : Σ{i; S ′ | S
σ1
⇒S ′} τ−→S2

σ2
⇒S1

iff (∗ for if use σ1 ∈ traces(S) or σ2 6= ǫ ∗)

Σ{i; S ′ | S
σ1
⇒S ′}

σ2
⇒S1

iff S1 ∈ ( choice S after σ1 ) after σ2

Now the proofs of 3. and 4.:

3. Directly from (1).

4. If σ2 6= ǫ directly from (1). For σ2 = ǫ directly from proposition 4.3.2.
2

Lemma B.2
Let the test suite ΠR(S) ⊆ DLTS be defined, for S ∈ LTS, by

ΠR(S) =def { t ∈ DLTS | t = Σ { a; ta | a ∈ A },
A ⊆ out(S),
v(t) = fail implies S after ǫ must A ,
ta ∈ ΠR( choice S after a ) },

then ΠR(S) is complete.
2

Proof (lemma B.2)
We prove, using equation (4.1),

∀S ∈ LTS : testreqsD(ΠR(S)) = specsC(S)



B.4. Chapter 4 (Synchronous Testing) 205

which is equivalent to

∀S ∈ LTS, ∀σ ∈ L∗, ∀A ⊆ L :
∃t ∈ ΠR(S) : v( t after σ ) = fail and out( t after σ ) ⊆ A

iff S
σ
⇒ and S after σ must A

by induction on the length of σ:

ǫ: To prove: ∀S ∈ LTS, ∀A ⊆ L : ∃t ∈ ΠR(S) : v(t) = fail and out(t) ⊆ A

iff S
ǫ
⇒ and S after ǫ must A

only if : Directly from the definition of ΠR(S), using proposition 3.5.3.

if : The test case t = Σ{a; stop | a ∈ A ∩ out(S)} with v(t) = fail and
v(stop) = pass fulfils the requirements.

a·σ: To prove:

∀S ∈ LTS, ∀A ⊆ L :
∃t ∈ ΠR(S) : v( t after a·σ ) = fail and out( t after a·σ ) ⊆ A

iff S
a·σ
⇒ and S after a·σ must A

∃t ∈ ΠR(S) : v( t after a·σ ) = fail and out( t after a·σ ) ⊆ A
iff (∗ definition ΠR(S) ∗)

∃t ∈ ΠR(S), ∃t′ : t a−→ t′
σ
⇒ t′ after σ

and v( t′ after σ ) = fail and out( t′ after σ ) ⊆ A
iff (∗ definition ΠR(S), a ∈ out(t) ⊆ out(S) ∗)

a ∈ out(S) and
∃t′ ∈ ΠR( choice S after a ) : v( t′ after σ ) = fail and

out( t′ after σ ) ⊆ A
iff (∗ induction hypothesis ∗)

a ∈ out(S) and choice S after a
σ
⇒ and

( choice S after a ) after σ must A
iff (∗ proposition 4.3.3 ∗)

S
a·σ
⇒ and S after a·σ must A

2

Proposition 4.5
Let L be finite, and let S ∈ LTS have finite behaviour.

1. tA =def Σ{a; ta | a ∈ A} is a sound test case for S, if

A ⊆ out(S), and
v(tA) = fail implies S after ǫ must A , and
ta is a sound test case for choice S after a .

2. The test suite

Π1
conf

(S) =def { tA ∈ DLTS | tA = Σ{a; ta | a ∈ A},
( A ∈ min⊆(Mǫ(S)) and v(tA) = fail )

or ( A = out(S) and v(tA) = pass ),
ta ∈ Π1

conf
( choice S after a ) },



206 Appendix B. Proofs

is complete.
2

Proof (proposition 4.5)

1. Directly from lemma B.2.

2. Soundness directly from lemma B.2: Π1
conf

(S) ⊆ ΠR(S). Completeness follows
from the fact that for each test case in ΠR(S) there is a test case in Π1

conf
(S) that

tests the same requirements.
2

Proposition 4.7
If S ∈ LTS is image-finite, and Mǫ(S) 6= ∅, then minimal elements of Mǫ(S) exist.

2

Proof (proposition 4.7)
If S is image-finiteness (definition 1.11.6), then S after ǫ must A is finite, hence there
exists a finite A′ with S after ǫ must A′ , viz. A′ = {a1, a2, . . . , an} with ai ∈ out(Si)
for each Si ∈ S after ǫ . If 6 ∃ai ∈ out(Si) for some i then Mǫ(S) = ∅.

This A′ is an element of the set of all finite subsets of L, which well-founded, hence
minimal elements exist (appendix A).

2

Proposition 4.9
⊑ is a partial order.

2

Proof (proposition 4.9)
Directly from the facts that ⊆ and = are partial orders.

2

Proposition 4.10
Let S ∈ LTS, then Π ∈ P(DLTS) is a complete test suite for S with respect to conf,
if ∃M ⊑ Mǫ(S):

Π = { tA ∈ DLTS | tA = Σ{a; ta | a ∈ A},
( A ∈ M and v(tA) = fail )

or ( A = out(S) and v(tA) = pass )
or ( A = ∅ and v(tA) = pass ),
for each a ∈ A : ta is element of a complete test suite
for choice S after a }

2

Proof (proposition 4.10)

Π ⊆ ΠR(S): Let t = Σ{a; ta | a ∈ A} ∈ Π then

(1): A ∈ M ⊑ Mǫ(S) and v(t) = fail
implies A ⊆ out(S) and S after ǫ must A
implies t ∈ ΠR(S) iff ∀a ∈ A : ta ∈ ΠR( choice S after a )

(2): M = ∅ and A = out(S) and v(t) = pass
implies t ∈ ΠR(S) iff ∀a ∈ A : ta ∈ ΠR( choice S after a )



B.4. Chapter 4 (Synchronous Testing) 207

(3): A = ∅ and v(t) = pass
implies t = stop ∈ ΠR(S)

Together they prove, by induction, with (3) forming the basis, that t ∈ ΠR(S)
(Strictly speaking only for t with finite behaviour).

completeness : Using proposition B.2:
∀S ∈ LTS : testreqsD(ΠR(S)) = testreqsD(
Pi) :

⊆: By induction on the length of σ:

ǫ: To prove:

∀S ∈ LTS, ∀A ⊆ L :
∃t ∈ ΠR(S) : v(t) = fail and out(t) ⊆ A

implies ∃t′ ∈ Π : v(t′) = fail and out(t′) ⊆ A

Let t = Σ{b; tb | b ∈ B} ∈ ΠR(S),
then B ⊆ out(S) and B = out(t) ⊆ A

and S after ǫ must B
implies S after ǫ must A
implies S after ǫ must A ∩ out(S)
implies A ∩ out(S) ∈ Mǫ(S)
implies ∃A′ ∈ M ⊑ Mǫ :

A′ ⊆ A ∩ out(S) and S after ǫ must A′

implies t′ = Σ{a; stop | a ∈ A′} ∈ Π
and out(t′) = A′ ⊆ A and v(t′) = fail

a·σ: To prove:

∀S ∈ LTS, ∀A ⊆ L :
∃t ∈ ΠR(S) : v( t after a·σ ) = fail and out( t after a·σ ) ⊆ A

implies
∃t′ ∈ Π : v( t′ after a·σ ) = fail and out( t′ after a·σ ) ⊆ A

Let t ∈ ΠR(S),

then ∃ta ∈ ΠR( choice S after a ) : t a−→ ta
σ
⇒ ta after σ

and v( ta after σ ) = fail and out( ta after σ ) ⊆ A
implies (∗ induction hypothesis ∗)

∃t′a ∈ Π( choice S after a ) :
v( t′a after σ ) = fail and out( ta after σ ) ⊆ A



208 Appendix B. Proofs

implies (∗ a ∈ out(t) ⊆ out(S) ∗)
if Mǫ(S) = ∅ then

t′ = Σ{b; tb | b ∈ out(S)} a−→ ta and v(t′) = pass
and v( t′ after a·σ ) = fail and out( t′ after a·σ ) ⊆ A

and if Mǫ(S) 6= ∅ then
∃A′ ∈ M ⊑ Mǫ(S) : a ∈ A′ and
t′ = Σ{b; tb | b ∈ A′} a−→ ta and v(t′) = fail
and v( t′ after a·σ ) = fail and out( t′ after a·σ ) ⊆ A

implies ∃t′ ∈ Π :
v( t′ after a·σ ) = fail and out( t′ after a·σ ) ⊆ A

⊇: Directly from Π ⊆ ΠR(S).
2

Proposition 4.14
Let Can(S) =def Σ{ i; Σ{ a; Can( choice S after a ) | a ∈ A } | A ∈ MS },

with

{

MS ⊑ Mǫ(S) if Mǫ(S) 6= ∅
MS = { ∅, out(S) } if Mǫ(S) = ∅

then Can(S) is a canonical tester of S.

Note that there may be many choices for MS , hence Can(S) is not uniquely determined.

2

Proof (proposition 4.14)

◦ ∀S ∈ LTS, ∀σ ∈ L∗ : S
σ
⇒ iff Can(S)

σ
⇒ ,

by induction on the length of σ:

ǫ: Evident.

a·σ: First, ∃S ′ : S
a
⇒S ′ iff Can(S)

a
→Can( choice S after a ), using, if

Mǫ(S) 6= ∅, then ∃A ∈ MS : a ∈ A, and if Mǫ(S) = ∅, then out(S) ∈ MS.
Secondly, if a ∈ out(S) = out(Can(S)), then:

S
a·σ
⇒

iff (∗ proposition 4.3.3, using a ∈ traces(S) ∗)

choice S after a
σ
⇒

iff (∗ induction hypothesis ∗)

Can( choice S after a )
σ
⇒

iff (∗ Can(S)
a
→Can( choice S after a ) ∗)

Can(S)
a·σ
⇒

◦ We prove
∀S ∈ LTS : testreqsD(Π) = testreqsN (Can(S))

with Π from proposition 4.10. This is equivalent to (propositions 3.22 and 3.26)

∀S ∈ LTS, ∀σ ∈ L∗, ∀A ⊆ L :
∃t ∈ Π : v( t after σ ) = fail and out( t after σ ) ⊆ A

iff Can(S) after σ must L and ∃C ′ ( Can(S)
σ
⇒C ′ and out(C ′) ⊆ A )



B.4. Chapter 4 (Synchronous Testing) 209

by induction on the length of σ:

ǫ: To prove:

∀S ∈ LTS, ∀A ⊆ L :
∃t ∈ Π : v(t) = fail and out(t) ⊆ A

iffCan(S) after ǫ must L and ∃C ′ ( Can(S)
ǫ
⇒C ′ and out(C ′) ⊆ A )

Let M2 denote MS for Π, and let MCan denote MS for Can(S), then

only if : ∃t ∈ Π : v(t) = fail and out(t) ⊆ A
implies (∗ definition Π in proposition 4.10 ∗)

∃B ∈ M2 ⊑ Mǫ(S) : B ⊆ A
implies (∗ definition 4.1.2: ∗)

(∗ rcl(MCan) = rcl(Mǫ(S)) implies ∗)
(∗ ∀B ∈ Mǫ(S), ∃B′ ∈ MCan : B′ ⊆ B ∗)
∃B ∈ Mǫ(S), ∃B′ ∈ MCan ⊑ Mǫ(S) : B′ ⊆ B ⊆ A

implies (∗ ∅ 6∈ MCan 6= ∅ and definition Can(S) ∗)
Can(S) after ǫ must L and
∃B′ ∈ MCan : B′ ⊆ A and

Can(S)
ǫ
⇒Σ{a; Can( choice S after a ) | a ∈ B′}

implies Can(S) after ǫ must L and

∃C ′ ( Can(S)
ǫ
⇒C ′ and out(C ′) ⊆ A )

if : Can(S) after ǫ must L and

∃C ′ ( Can(S)
ǫ
⇒C ′ and out(C ′) ⊆ A )

implies ( ∃B ∈ MCan ⊑ Mǫ(S) 6= ∅ and B ⊆ A and

Can(S)
ǫ
⇒Σ{a; Can( choice S after a ) | a ∈ B} )

or ( Can(S)
ǫ
⇒Can(S) and out(Can(S)) = out(S) ⊆ A )

implies ∃B ∈ Mǫ(S), ∃B′ ∈ M2 ⊑ Mǫ(S) 6= ∅ : B′ ⊆ B ⊆ A
implies ∃B′ ∈ M2 6= ∅ : B′ ⊆ A
implies ∃B′ ∈ M2, ∃t = Σ{b; stop | b ∈ B′} :

v(t) = fail and out(t) = B′ ⊆ A and v(stop) = pass
implies ∃t ∈ Π : v(t) = fail and out(t) ⊆ A

a·σ: To prove:

∀S ∈ LTS, ∀A ⊆ L :
∃t ∈ Π : v( t after a·σ ) = fail and out( t after a·σ ) ⊆ A

iff Can(S) after a·σ must L and

∃C ′ ( Can(S)
a·σ
⇒C ′ and out(C ′) ⊆ A )



210 Appendix B. Proofs

∃t ∈ Π : v( t after a·σ ) = fail and out( t after a·σ ) ⊆ A

iff ∃ta ∈ Π( choice S after a ) : t a−→ ta
σ
⇒ ta after σ and

v( ta after σ ) = fail and out( ta after σ ) ⊆ A
iff (∗ induction hypothesis ∗)

Can( choice S after a ) after σ must L and

∃C ′ ( Can( choice S after a )
σ
⇒C ′ and out(C ′) ⊆ A )

iff (∗ a ∈ out(t) ⊆ out(S) = out(Can(S)), and ∗)

(∗ ( Can(S)
a
→Can( choice S after a ) ) ∗)

Can(S) after a·σ must L and

∃C ′ ( Can(S)
a
→Can( choice S after a )

σ
⇒C ′ and out(C ′) ⊆ A )

2

Proposition 4.15

1. If C1, C2 ∈ LTS are both canonical testers of S, then C1 ≈te C2.

2. If CS is a canonical tester of S, and CCS
is a canonical tester of CS, then CCS

≈te S.
2

Proof (proposition 4.15)
See [Bri87].

2

B.4.2 Section 4.3 (Language Based Test Derivation)

Proposition 4.18
Let S ∈ LTS, then

1. { out(S ′) | S
ǫ
⇒S ′ τ−−→/ } ∪ {out(S)}

⊑ { out(S ′) | S
ǫ
⇒S ′ }

⊑ { A ⊆ out(S) | ∃S ′ ( S
ǫ
⇒S ′ and out(S ′) ⊆ A ) }

= Cǫ(S)

2. If C1 ⊑ C2 then Ψ(C1) = Ψ(C2)

3. Let C ′ ⊑ Cǫ(S), then Ψ(C ′) = Mǫ(S)

4. Let M ′ ⊑ Mǫ(S), then Ψ(M ′) = Cǫ(S)
2

Proof (proposition 4.18)

1. Let C1 = {out(S ′) | S
ǫ
⇒S ′ τ

−−→/ } ∪ {out(S)}, C2 = {out(S ′) | S
ǫ
⇒S ′} :

◦ Cǫ(S) = { out(S)\A | S after ǫ refuses A }
= { A′ ⊆ out(S) | S after ǫ refuses out(S)\A′ }

= { A′ ⊆ out(S) | ∃S ′ ( S
ǫ
⇒S ′ and ∀a ∈ out(S)\A′ : S ′

a

6⇒ ) }

= { A′ ⊆ out(S) | ∃S ′ ( S
ǫ
⇒S ′ and out(S ′) ⊆ A′ ) }

⊇ { out(S ′) | S
ǫ
⇒S ′ } = C2

⊇ { out(S ′) | S
ǫ
⇒S ′ and S ′ τ

−−→/ } ∪ {out(S)} = C1



B.4. Chapter 4 (Synchronous Testing) 211

◦
⋃

Cǫ(S) =
⋃

C1 =
⋃

C2 = out(S)

◦ rcl⊆(C1) = rcl⊆(C2) = rcl⊆(Cǫ(S)) = Cǫ(S):
⊆ directly from C1 ⊆ C2 ⊆ Cǫ(S).
For ⊇, let A ∈ Cǫ(S),

then ∃S ′ ( S
ǫ
⇒S ′ and out(S ′) ⊆ A ⊆ out(S) ) }

implies (∗ S is strongly converging, section 1.4 ∗)

∃S ′, S ′′ ( S
ǫ
⇒S ′ ǫ

⇒S ′′ τ
−−→/ and out(S ′′) ⊆ out(S ′) ⊆ A ) }

implies ∃A′ = out(S ′) ∈ C2 : A′ ⊆ A and
∃A′′ = out(S ′′) ∈ C1 : A′′ ⊆ A

implies A ∈ rcl⊆(C2), and A ∈ rcl⊆(C1)

2. To prove: ∀A ⊆ L : A ⊆
⋃

C1 and ∀A′ ∈ C1 : A ∩ A′ 6= ∅
iff A ⊆

⋃
C2 and ∀A′′ ∈ C2 : A ∩ A′′ 6= ∅

⋃
C1 =

⋃
C2 from the definition of C1 ⊑ C2;

if from C1 ⊆ C2; for only if , let A′′ ∈ C2,
then (∗ rcl⊆(C1) = rcl⊆(C2) ∗)

∃A′′
1 ∈ C1 : A′′

1 ⊆ A′′

implies (∗ ∀A′ ∈ C1 : A ∩ A′ 6= ∅ ∗)
A ∩ A′′ 6= ∅

3. ⊆: Let A ∈ Ψ(C ′) = Ψ(Cǫ(S)), and let S
ǫ
⇒S ′,

then out(S ′) ∈ Cǫ(S) and A ∩ out(S ′) 6= ∅, so ∃a ∈ A : S ′ a
⇒ ,

hence A ∈ Mǫ(S).

⊇: Let A ∈ Mǫ(S), and let A′ ∈ C ′ ⊆ Cǫ(S),

then ∃S ′ ( S
ǫ
⇒S ′ and out(S ′) ⊆ A′ ).

For this S ′, since A ∈ Mǫ(S) : ∃a ∈ A : S ′ a
⇒ , so A ∩ out(S ′) 6= ∅,

hence A ∩ A′ 6= ∅, hence A ∈ Ψ(C ′).

4. ⊆: By contraposition: A 6∈ Cǫ(S) implies A 6∈ Ψ(M ′) = Ψ(Mǫ(S)).
From proposition 4.18.1:
A 6∈ Cǫ(S) iff S after ǫ must out(S)\A iff out(S)\A ∈ Mǫ(S).
Moreover, (out(S)\A) ∩ A = ∅, hence A 6∈ Ψ(Mǫ(S)).

⊇: Let A ∈ Cǫ(S), and let A′ ∈ M ′ ⊆ Mǫ(S),

then ∃S ′ ( S
ǫ
⇒S ′ and out(S ′) ⊆ A ).

For this S ′, since A′ ∈ Mǫ(S), ∃a ∈ A′ : S ′ a
⇒ ,

hence out(S ′) ∩ A′ 6= ∅, hence A ∩ A′ 6= ∅, hence A ∈ Ψ(M ′).
2

Proposition 4.20

1. If S ∈ LTS is image-finite, then

◦ there is a finite C ′ ⊑ Cǫ(S);

◦ for any σ: choice S after σ is image-finite.

2. If C ′ ⊑ Cǫ(S) is finite, then



212 Appendix B. Proofs

◦ Ψo(C
′) ⊑ Ψ(C ′);

◦ min⊆(C ′) ∪ {out(S)} ⊑ Cǫ(S);

◦ min⊆(Ψo(C
′)) ∪ {out(S) | ∅ 6∈ C ′} ⊑ Ψ(Cǫ(S)).

3. The language BEX restricted to (4.6) is image-finite.
2

Proof (lemma 4.20)

1. ◦ S is image-finite iff ∀σ ∈ L∗ : S after σ is finite, (definition 1.11.6),

implies { S ′ | S
ǫ
⇒S ′ } is finite,

implies C ′ = { out(S ′) | S
ǫ
⇒S ′ } is finite (proposition 4.18.1).

◦ Image-finiteness of choice S after σ follows directly from definition 4.2 and
statement (1) in the proof of proposition 4.3.

2. ◦Ψo(C) ⊆ Ψ(C): Let A = {a1, . . . , an} ∈ Ψo(C), then ∀i : ai ∈ Ai, hence ∀i :
A ∩ Ai 6= ∅, and A ⊆

⋃
{A1, . . . , An} =

⋃
C, so A ∈ Ψ(C).

rcl⊆(Ψo(C)) = rcl⊆(Ψ(C)): ⊆ directly from Ψo(C) ⊆ Ψ(C).
For ⊇: A ∈ rcl⊆(Ψ(C))
implies ∃A′ ∈ Ψ(C) : A′ ⊆ A
implies ∃A′, ∀i : A′ ∩ Ai 6= ∅ and A′ ⊆ A
implies ∃A′, ∀i, ∃ai ∈ Ai : ai ∈ A′ and A′ ⊆ A
implies ∃A′, ∃{a1, . . . , an} ∈ Ψo(C) : {a1, . . . , an} ⊆ A′ ⊆ A
implies A ∈ rcl⊆(Ψo(C))

⋃
Ψo(C) =

⋃
Ψ(C): If ∅ ∈ C then

⋃
Ψo(C) =

⋃
Ψ(C) = ∅, else:

a ∈
⋃

Ψ(C)
iff a ∈

⋃
C

iff ∃Ai ∈ C : a ∈ Ai

iff ∃{a1, . . . , an} ∈ Ψo(C) : a ∈ {a1, . . . , an}
iff a ∈

⋃
Ψo(C)

◦ Let C ′′ = min⊆(C ′) ∪ {out(S)}:

C ′′ ⊆ Cǫ(S): A ∈ C ′′ implies either A ∈ min⊆(C ′) ⊆ C ′ ⊆ Cǫ(S), or A =
out(S) ∈ Cǫ(S).

⋃
C ′′ =

⋃
Cǫ(S): Both are equal to out(S).

rcl⊆(C ′′) = rcl⊆(Cǫ(S)): Cǫ(S) 6= ∅ implies C ′ 6= ∅ implies
(∗ C ′ is finite: existence of minimal elements ∗) min(C ′) 6= ∅;
moreover, ∀A ∈ C ′ : A ⊆ out(S),
hence min⊆(C ′′) = min⊆(min⊆(C ′) ∪ {out(S)}) = min⊆(C ′),
implying (∗ C ′ and C ′′ are finite: proposition A.2 ∗) :
rcl⊆(C ′′) = rcl⊆(C ′) = (∗ C ′ ⊑ Cǫ(S) ∗) = rcl⊆(Cǫ(S)).

◦ Let M = min⊆(Ψo(C
′)) ∪ {out(S) | ∅ 6∈ C ′}, then, if ∅ ∈ C ′, M = ∅ =

Ψ(Cǫ(S)).
If ∅ 6∈ C ′, the proof is analogous to the previous item:



B.4. Chapter 4 (Synchronous Testing) 213

M ⊆ Ψ(Cǫ(S)): A ∈ M implies either A ∈ min⊆(Ψo(C
′)) ⊆ Ψo(C

′) ⊆ Ψ(C ′) =
Ψ(Cǫ(S)), or A = out(S) ∈ ΨCǫ(S)).

⋃
M =

⋃
Ψ(Cǫ(S)): Both are equal to out(S).

rcl⊆(M) = rcl⊆(Ψ(Cǫ(S)): ∅ 6∈ C ′ implies Ψo(C
′) 6= ∅ implies

(∗ Ψo(C
′) is subset of the set of finite subsets of out(S), ∗)

(∗ which is well-founded ∗) min(Ψo(C
′)) 6= ∅;

moreover, ∀A ∈ Ψo(C
′) : A ⊆ out(S),

hence min⊆(M) = min⊆(min⊆(Ψo(C
′)) ∪ {out(S)}) = min⊆(Ψo(C

′)),
implying (∗ well-foundedness: proposition A.2 ∗) :
rcl⊆(M) = rcl⊆(Ψo(C

′)) = (∗ Ψo(C
′) ⊑ Ψ(C ′) ∗) = rcl⊆(Ψ(C ′)) =

rcl⊆(Ψ(Cǫ(S))).

3. By induction on the structure of B ∈ BEX :

◦ stop after ǫ = {stop}, stop after a·σ = ∅, hence always finite.

◦ a; B after ǫ = a; B, a; B after a·σ = B after σ , a; B after b·σ = ∅ (b 6= a),
hence always finite, if B after σ is finite.

◦ i; B after ǫ = B after ǫ ∪ {i; B}, i; B after a·σ = B after a·σ , hence always
finite, if B after a·σ is finite.

◦ B12B2 after ǫ = {B12B2} ∪ ( B1 after ǫ )\{B1} ∪ ( B2 after ǫ )\{B2},
B12B2 aftera·σ = ( B1 aftera·σ )\{B1}∪ ( B2 aftera·σ )\{B2}, hence always
finite, if B1 after σ and B2 after σ are finite for all σ.

2

Proposition 4.24
Let B ∈ BEX , restricted to (4.6), and let outB(B), stB(B), C(B), and choiceB B after g
be compositionally defined in table 4.1, then

◦ outB(B) = out(ℓts(B))

◦ stB(B) iff ℓts(B) is stable

◦ C(B) ⊑ Cǫ(ℓts(B))

◦ choiceB B after g ≈te choice ℓts(B) after g
2

Proof (proposition 4.24)

1. out(ℓts(stop))
= (∗ definition out(S) in 1.11.1 ∗)

{ a ∈ L | ℓts(stop)
a
⇒}

= (∗ stop as the initial state in ℓts(stop) = 〈BEX , L, TBEX , stop〉 ∗)

{ a ∈ L | stop
a
⇒}

= (∗ definition 1.7 ∗)
∅

= (∗ table 4.1, stop as an element of BEX ∗)
outB(stop)



214 Appendix B. Proofs

2. With analogous argumentations:
out(ℓts(a; B1)) = { a ∈ L | a; B1

a
⇒} = {a}

3. out(ℓts(i; B1)) = { a ∈ L | i; B1
a
⇒} = { a ∈ L | i; B1

τ−→B1
a
⇒}

= { a ∈ L | B1
a
⇒} = outB(B1)

4. out(ℓts(B12B2)) = { a ∈ L | B12B2
a
⇒ } = { a ∈ L | B1

a
⇒ or B2

a
⇒ }

= { a ∈ L | B1
a
⇒} ∪ { a ∈ L | B2

a
⇒} = outB(B1) ∪ outB(B2)

5. st(ℓts(stop))
iff (∗ definition stable in 1.11.8 ∗)

ℓts(stop)
τ

−−→/
iff (∗ stop as the initial state in ℓts(stop) = 〈BEX , L, TBEX , stop〉 ∗)

stop
τ−−→/

iff (∗ definition 1.7 ∗)
true

= (∗ table 4.1, stop as an element of BEX ∗)
stB(stop)

6. With analogous argumentations:
st(ℓts(a; B1)) iff a; B1

τ
−−→/ always holds.

7. st(ℓts(i; B1)) iff i; B1
τ

−−→/ never holds.

8. st(ℓts(B12B2)) iff B12B2
τ

−−→/
iff B1

τ
−−→/ and B2

τ
−−→/ iff stB(B1) and stB(B2)

9. Cǫ(ℓts(stop)) ⊒ (∗ proposition 4.18.1 ∗)

{ out(S ′) | stop
ǫ
⇒S ′ } = {out(stop)} = {∅}

10. Cǫ(ℓts(a; B1)) ⊒ { out(S ′) | a; B1
ǫ
⇒S ′ } = {out(a; B1)} = {{a}}

11. To prove: C(i; B1) ⊑ Cǫ(ℓts(i; B1))

First: Cǫ(i; B1)

= { A ⊆ out(i; B1) | ∃S ′ ( i; B1
ǫ
⇒S ′ and out(S ′) ⊆ A ) }

= { A ⊆ out(B1) | ∃S ′ ( B1
ǫ
⇒S ′ and out(S ′) ⊆ A ) }

= Cǫ(B1)

Secondly, we may assume: C(B1) ⊑ Cǫ(B1).

Together: C(i; B1) = (∗ table 4.1 ∗) = C(B1) ⊑ Cǫ(B1) = Cǫ(i; B1).

12. To prove: C(B12B2) ⊑ Cǫ(ℓts(B12B2))

where C(B12B2) = {out(B12B2)}∪ if 6st(B1) then C(B1)∪ if 6st(B2) then C(B2).
According to the definition of ⊑ in definition 4.1.2:
⋃
C(B12B2) =

⋃
Cǫ(B12B2): Both are equal to out(B12B2).

C(B12B2) ⊆ Cǫ(B12B2): Let A ∈ C(B12B2), then (1), (2), or (3):
(1): A = out(B12B2)
implies A ∈ Cǫ(B12B2)



B.4. Chapter 4 (Synchronous Testing) 215

(2): A ∈ C(B1)
implies 6st(B1) and A ∈ Cǫ(B1)

implies ∃S ′ ( B1
ǫ
⇒S ′ and out(S ′) ⊆ A )

implies

either ∃S ′ ( B1
τ−→

ǫ
⇒S ′ and out(S ′) ⊆ A )

implies B12B1
τ−→

ǫ
⇒S ′ and out(S ′) ⊆ A )

implies A ∈ Cǫ(B12B2)

or B1
ǫ
⇒B1 and out(B1) ⊆ A

implies ∃B′
1 ( B1

τ−→B′
1 and out(B′

1) ⊆ out(B1) ⊆ A )
implies ∃B′

1 ( B12B2
τ−→B′

1 and out(B′
1) ⊆ A )

implies A ∈ Cǫ(B12B2)
(3): A ∈ C(B2) : analogous to (2), exchanging B1 and B2 .

rcl⊆(C(B12B2)) = rcl⊆(Cǫ(B12B2)): ⊆ directly from C(B12B2) ⊆ Cǫ(B12B2).
For ⊇, let A ∈ rcl⊆(Cǫ(B12B2)) = Cǫ(B12B2)),

then ∃S ′ ( B12B2
ǫ
⇒S ′ and out(S ′) ⊆ A ):

S ′ = B12B2: A = out(S ′) = out(B12B2) ∈ rcl⊆(C(B12B2))

S ′ = B′
1: B12B2

τ−→
ǫ
⇒B′

1 and out(B′
1) ⊆ A

implies A ∈ Cǫ(B1) and 6st(B1)
implies (∗ C(B1) ⊑ Cǫ(B1) ∗)

∃A′ ∈ C(B1) : A′ ⊆ A and 6st(B1)
implies ∃A′ ∈ C(B12B2) : A′ ⊆ A
implies A ∈ rcl⊆(C(B12B2))

S ′ = B′
2: Analogous to the previous item, exchanging B1 and B2.

13. choice ℓts(a; B1) after g
≈te (∗ proposition 4.3.1 ∗)

Σ{i; S ′ | a; B1

g
→S ′}

= (∗ definition
g
→ in table 1.1 ∗)

Σ{i; B1 | a = g}

=

{

i; B1 if a = g
stop if a 6= g

= (∗ table 4.1 ∗)
choiceB a; B after g

14. With analogous argumentations:

choice ℓts(stop) after g ≈te Σ{i; S ′ | stop
g
→S ′} = Σ∅ = stop

15. choice ℓts(i; B1) after g ≈te Σ{i; S ′ | i; B1

g
→S ′} = Σ{i; S ′ | B1

g
→S ′} ≈te

choiceB B1 after g

16. choice ℓts(B12B2) after g ≈te Σ{i; S ′ | B12B2

g
→S ′}

= Σ{i; S ′ | B1

g
→S ′ or B2

g
→S ′}

≡ Σ{i; S ′ | B1

g
→S ′} 2 Σ{i; S ′ | B2

g
→S ′}



216 Appendix B. Proofs

= choiceB B1 after g 2 choiceB B2 after g
2

B.4.3 Section 4.4 (Test Derivation with Values)

Proposition 4.28
Any B ∈ BEXv

c is image-finite.
2

Proof (proposition 4.28)
By induction on the structure of B ∈ BEXv:

◦ stop after ǫ = {stop}; stop after a·σ = ∅; hence always finite.

◦ g?x : p; B after ǫ = Σ{〈g, v〉; B[v/x] | p[v/x]}after ǫ = Σ{〈g, v〉; B[v/x] | p[v/x]}.
g?x : p; B after 〈h, v〉 ·σ = Σ{〈g, v〉; B[v/x] | p[v/x]} after 〈h, v〉 ·σ = if g =
h and p[v/x] then B[v/x] after σ else ∅.
Hence it is always finite, if B[v/x] after σ is finite. Since B[v/x] is closed, this
follows from the induction hypothesis.

◦ If p then i : p; B after ǫ = B after ǫ ∪ {i; B}, and i : p; B after 〈h, v〉 ·σ =
i; B after 〈h, v〉·σ = B after σ .
If not p then i : p; B after ǫ = {stop}, and i : p; B after 〈h, v〉·σ = ∅.
Hence it is always finite, if B after 〈h, v〉·σ is finite.

◦ B12B2 after ǫ = {B12B2} ∪ ( B1 after ǫ )\{B1} ∪ ( B2 after ǫ )\{B2},
B12B2 after a ·σ = ( B1 after a ·σ )\{B1} ∪ ( B2 after a ·σ )\{B2}, hence always
finite, if B1 after σ and B2 after σ are finite for all σ.

2

Lemma 4.30
Let C ∈ P(P(L)), D ∈ P(P(P(L))), such that there is a bijection δ : C → D, with for
all A ∈ C :

⋃
δ(A) = A, then

Ψ(C) =
⋃

{ Ψ(E) | E ∈ Ψ(D) }

2

Proof (lemma 4.30)

⊆: Let α ∈ Ψ(C),

then: α ∈
⋃

C and ∀A ∈ C : α ∩ A 6= ∅
implies α ∈

⋃
C and ∀A ∈ C : α ∩

⋃
δ(A) 6= ∅

implies α ∈
⋃

C and ∀A ∈ C : ∃D′′ ∈ δ(A) : α ∩ D′′ 6= ∅
implies α ∈

⋃
C and ∀D′ ∈ D : ∃D′′ ∈ D′ : α ∩ D′′ 6= ∅

Let F = { D′′ | ∃D′ ∈ D : D′′ ∈ D′ and D′′ ∩ α 6= ∅ }, then



B.4. Chapter 4 (Synchronous Testing) 217

then: ∀D′′ ∈ F : α ∩ F 6= ∅ (1)
and a ∈ α
implies ∃A ∈ C : a ∈ A
implies ∃D′ ∈ D : a ∈

⋃
D′

implies ∃D′ ∈ D, ∃D′′ ∈ D′ : a ∈ D′′

implies ∃D′′ ∈ F : a ∈ D′′

implies a ∈
⋃

F (2)
thus from (1) and (2): α ∈ Ψ(F ) (3)

moreover: F ⊆
⋃

D and ∀D′ ∈ D : ∃D′′ ∈ D′ : α ∩ D′′ 6= ∅
implies F ⊆

⋃
D and ∀D′ ∈ D : F ∩ D′ 6= ∅

implies F ∈ Ψ(D) (4)

Concluding from (3) and (4): α ∈
⋃
{Ψ(E) | E ∈ Ψ(D)}.

⊇: Let α ∈
⋃
{Ψ(E) | E ∈ Ψ(D)},

then: ∃E ∈ Ψ(D) : α ∈ Ψ(E)
implies ∃E : ( E ⊆

⋃
D and ∀D′ ∈ D : E ∩ D′ 6= ∅ ) and

( α ⊆
⋃

E and ∀E ′ ∈ E : α ∩ E ′ 6= ∅ )
implies ∃E : α ⊆

⋃
E and E ⊆

⋃
D and

∀D′ ∈ D : ∃D′′ ∈ D′ : D′′ ∈ E and ∀E ′ ∈ E : α ∩ E ′ 6= ∅
implies α ⊆

⋃ ⋃
D and ∀D′ ∈ D : ∃D′′ ∈ D′ : α ∩ D′′ 6= ∅

implies α ⊆
⋃

C and ∀D′ ∈ D : α ∩
⋃

D′ 6= ∅
implies α ⊆

⋃
C and ∀A ∈ C : α ∩ A 6= ∅

implies α ∈ Ψ(C)

.

2



218 Appendix B. Proofs

B.5 Chapter 5 (Asynchronous Testing)

B.5.1 Section 5.4 (Queue Equivalence)

Proposition 5.11

1. Any queue context Q can always do any sequence of input actions: ∀σi ∈ L∗
I :

Q
σi
⇒

2. For a queue context Q, σ ∈ L∗, A ⊆ L, and A ∩ LI 6= ∅, Q after σ must A
holds.

2

Proof (proposition 5.11)

1. From axiom A1Q it follows that a queue context can always do an input action.

Together with the fact that for any derivation Q
σ
⇒Q′, with σ ∈ L∗ and Q a

queue context, Q′ is a queue context too, as follows immediately from A1Q, A2Q,
I1Q, I2Q and I3Q, it follows that any queue context can always do any sequence
of input actions.

2. A direct consequence of proposition 5.11.1, again using the fact that a derivation
of a queue context results in a queue context.

2

Proposition 5.12

If Q
σ·x
⇒ then Q after σ refuses LU\{x} .

2

Proof (proposition 5.12)
The proof uses the fact that if the first action in the output queue of a queue context
Q is x, then Q can do an x-action, but no other output action:

if Q x−→ then ∀y ∈ LU , y 6= x : Q
y

6⇒

which is seen as follows: if Q x−→ then this must be a consequence of A2Q, and Q must

have the form [x·σu≪S≪σi
]. It follows that [x·σu≪S≪σi

]
y

−−→/ if y ∈ LU and y 6= x. But
since A2Q is the only axiom or inference rule that can remove x from the head of the
output queue, it follows that Q must first do x before it can do any output action y 6= x,

and thus Q
y

6⇒ .

Now: Q
σ·x
⇒

implies ∃Q′ : Q
σ
⇒Q′ x−→

implies ∃Q′ : Q
σ
⇒Q′ and ∀y ∈ LU , y 6= x : Q′

y

6⇒
implies Q after σ refuses LU\{x} 2

Lemma B.3
For σ ∈ L∗, A ⊆ LU : QS after σ must A iff OS(σ) ⊆ A

2



B.5. Chapter 5 (Asynchronous Testing) 219

Proof (lemma B.3)
We prove: QS after σ refuses A iff OS(σ) 6⊆ A :

if : OS(σ) 6⊆ A implies δ ∈ OS(σ) or ∃x ∈ LU : x ∈ OS(σ) and x 6∈ A:

δ ∈ OS(σ): δ ∈ OS(σ)
implies QS after σ refuses LU

implies (∗ proposition 3.5.2 ∗)
QS after σ refuses A

∃x ∈ LU : x ∈ OS(σ) and x 6∈ A:
∃x ∈ LU : x ∈ OS(σ) and x 6∈ A

implies ∃x : QS

σ·x
⇒ and x 6∈ A

implies (∗ proposition 5.12 ∗)
∃x : QS after σ refuses LU\{x} and x 6∈ A

implies (∗ proposition 3.5.2 ∗)
QS after σ refuses A

only if : Distinguish between QS after σ refuses LU and ¬ QS after σ refuses LU :

QS after σ refuses LU : QS after σ refuses LU

implies δ ∈ OS(σ)
implies OS(σ) 6⊆ A

¬ QS after σ refuses LU :
QS after σ refuses A and ¬ QS after σ refuses LU

implies (∗ proposition 3.5.1 ∗)

∃Q′(QS

σ
⇒Q′ and ∀x ∈ A : Q′

x

6⇒ )

and ∀Q′′(QS

σ
⇒Q′′ implies ∃y ∈ LU : Q′′ y

⇒ )

implies ∃Q′, ∃y ∈ LU(QS

σ
⇒Q′ y

⇒ and ∀x ∈ A : Q′
x

6⇒ )
implies ∃y ∈ OS(σ) : y 6∈ A
implies OS(σ) 6⊆ A

2

Lemma B.4

( ∀σ ∈ L∗, ∀A ⊆ LU : OS1(σ) ⊆ A implies OS2(σ) ⊆ A )
iff ( ∀σ ∈ L∗ : OS2(σ) ⊆ OS1(σ) )

2

Proof (lemma B.4)

if : Let σ ∈ L∗, A ⊆ LU , with OS1(σ) ⊆ A:
then OS2(σ) ⊆ OS1(σ), thus OS2(σ) ⊆ A.

only if : Let σ ∈ L∗, x ∈ OS2(σ), then we have to prove that x ∈ OS1(σ):

x = δ: Take σ and A = LU in the left-hand side of the lemma:

OS1(σ) ⊆ LU implies OS2(σ) ⊆ LU

iff δ 6∈ OS1(σ) implies δ 6∈ OS2(σ)
iff δ ∈ OS2(σ) implies δ ∈ OS1(σ)

thus x ∈ OS1(σ).



220 Appendix B. Proofs

x ∈ LU , δ 6∈ OS1(σ): Take σ and A = OS1(σ) in the left-hand side of the lemma:

OS1(σ) ⊆ OS1(σ) implies OS2(σ) ⊆ OS1(σ)
iff OS2(σ) ⊆ OS1(σ)

thus, if x ∈ OS2(σ), then x ∈ OS1(σ).

x ∈ LU , δ ∈ OS1(σ): The left-hand side of the lemma is trivially fulfilled for σ and
for all A, since OS1(σ) 6⊆ A. Now consider the trace σ ·x and make the same
distinction between δ ∈ OS1(σ ·x) and δ 6∈ OS1(σ ·x):

δ ∈ OS1(σ ·x): This implies σ ·x ∈ traces(QS1), thus x ∈ OS1(σ).

δ 6∈ OS1(σ ·x): Take σ ·x and A = LU in the left-hand side of the lemma,
which implies δ 6∈ OS2(σ ·x).
Since x ∈ OS2(σ): σ ·x ∈ traces(QS2) and OS2(σ ·x) 6= ∅.
Since δ 6∈ OS2(σ ·x): ∃y ∈ LU with y ∈ OS2(σ ·x).
So we have y ∈ OS2(σ ·x), y ∈ LU , and δ 6∈ OS1(σ ·x), which allow to take
σ ·x and A = OS1(σ ·x) in the left-hand side of the lemma, analogous to
the second item, implying OS2(σ ·x) ⊆ OS1(σ ·x), thus y ∈ OS1(σ ·x).
Now we have σ·x·y ∈ traces(QS1), thus σ·x ∈ traces(QS1), thus x ∈ OS1(σ).

2

Theorem 5.14

S1 ≈Q S2 iff ∀σ ∈ L∗ : OS1(σ) = OS2(σ)

2

Proof (theorem 5.14)
S1 ≈Q S2

iff (∗ equation (5.1) ∗)
∀σ ∈ L∗, ∀A ⊆ L : QS1 after σ must A iff QS2 after σ must A

iff (∗ proposition 5.11.2 ∗)
∀σ ∈ L∗, ∀A ⊆ LU : QS1 after σ must A iff QS2 after σ must A

iff (∗ lemma B.3 ∗)
∀σ ∈ L∗, ∀A ⊆ LU : OS1(σ) ⊆ A iff OS2(σ) ⊆ A

iff (∗ lemma B.4 ∗)
∀σ ∈ L∗ : OS1(σ) = OS2(σ)

2

Corollary 5.15

S1 ≈Q S2 iff traces(QS1) = traces(QS2) and δ-traces(S1) = δ-traces(S2)

2

Proof (theorem 5.15)
First we prove:

(∀σ ∈ L∗, ∀x ∈ LU : QS1

σ·x
⇒ iff QS2

σ·x
⇒ ) iff (∀σ ∈ L∗ : QS1

σ
⇒ iff QS2

σ
⇒ )

if : Trivial.



B.5. Chapter 5 (Asynchronous Testing) 221

only if : Let QS1

σ
⇒ , then we have to prove that QS2

σ
⇒ .

Distinguish between σ ∈ L∗
I , and σ = σ′ ·x·ρ with σ′ ∈ L∗, x ∈ LU , and ρ ∈ L∗

I :

σ ∈ L∗
I : QS2

σ
⇒ always holds.

σ = σ′ ·x·ρ: QS1

σ′·x·ρ
⇒

implies QS1

σ′·x
⇒

implies QS2

σ′·x
⇒ (∗ proposition 5.11.1 ∗)

implies QS2

σ′·x·ρ
⇒

Now the proof of the theorem is straightforward:
S1 ≈Q S2

iff ∀σ ∈ L∗ : OS1(σ) = OS2(σ)

iff (∀σ ∈ L∗, ∀x ∈ LU : QS1

σ·x
⇒ iff QS2

σ·x
⇒ ) and (∀σ ∈ L∗ : δS1(σ) = δS2(σ))

iff (∀σ ∈ L∗ : QS1

σ
⇒ iff QS2

σ
⇒ ) and δ-traces(S1) = δ-traces(S2)

iff traces(QS1) = traces(QS2) and δ-traces(S1) = δ-traces(S2)
2

B.5.2 Section 5.5 (Traces of Queue Contexts)

Proposition 5.18
Let σ, σ1, σ2 ∈ L∗:

1. σ1 @ σ2 implies σ1⌈LU = σ2⌈LU

2. σ1 @ σ2 implies σ1⌈LI � σ2⌈LI

3. σ⌈LU @ σ

4. σ2\\σ1 = (σ2⌈LI)\(σ1⌈LI)
2

Proof (proposition 5.18)

1. By induction on the number of output actions in σ1:

◦ Basis: σ1 ∈ L∗
I . By definition of @, also σ2 ∈ L∗

I , and σ1⌈LU = ǫ = σ2⌈LU .

◦ Induction step: σ1 = ρ1 ·x1 ·σ
′
1, with ρ1 ∈ L∗

I , x1 ∈ LU , σ′
1 ∈ L∗.

By definition of @, σ2 = ρ2 ·x2 ·σ
′
2, with ρ1 � ρ2, x1 = x2, σ

′
1 @ (ρ2\ρ1)·σ

′
2.

σ1⌈LU = x1·(σ
′
1⌈LU ) = (∗ induction ∗) = x1·((ρ2\ρ1)·σ

′
2⌈LU ) = (ρ2·x2·σ

′
2)⌈LU =

σ2⌈LU .

2. By induction on the number of output actions in σ1 and σ2; proposition 5.18.1
shows that the number of output actions in σ1 and σ2 is equal:

◦ Basis: σ1, σ2 ∈ L∗
I . By definition of @: σ1 � σ2, so σ1⌈LI = σ1 � σ2 = σ2⌈LI .

◦ Induction step:
σ1 = ρ1 ·x1 ·σ

′
1, σ2 = ρ2 ·x2 ·σ

′
2, with ρ1 � ρ2, x1 = x2, σ

′
1 @ (ρ2\ρ1)·σ

′
2.



222 Appendix B. Proofs

σ1⌈LI = ρ1 ·(σ
′
1⌈LI) � (∗ induction ∗) � ρ1 ·((ρ2\ρ1)·σ

′
2⌈LI) = (ρ2 ·σ

′
2)⌈LI =

σ2⌈LI .

3. By induction on the number of output actions in σ:

◦ Basis: σ ∈ L∗
I . σ⌈LU = ǫ � σ, thus by definition of @: σ⌈LU @ σ.

◦ Induction step: σ = ρ·x·σ′, with ρ ∈ L∗
I , x ∈ LU , σ′ ∈ L∗.

By induction (ρ·σ′)⌈LU@(ρ·σ′), from which σ′⌈LU@ρ·σ′.
Together with ǫ � ρ and x⌈LU = x: σ⌈LU = ǫ·x·(σ′⌈LU )@ρ·x·σ′ = σ.

4. By induction on the number of output actions in σ1 and σ2:

◦ Basis: σ1, σ2 ∈ L∗
I : σ2\\σ1 = σ2\σ1 = (σ2⌈LI)\(σ1⌈LI).

◦ Induction step:
σ1 = ρ1 ·x1 ·σ

′
1, σ2 = ρ2 ·x2 ·σ

′
2, with ρ1 � ρ2, x1 = x2, σ

′
1 @ (ρ2\ρ1)·σ

′
2.

σ2\\σ1 = ((ρ2\ρ1) ·σ
′
2)\\σ

′
1 = (∗ induction ∗) = ((ρ2\ρ1) ·σ

′
2)⌈LI\σ

′
1⌈LI =

ρ1 ·(ρ2\ρ1)·(σ
′
2)⌈LI\ρ1 ·(σ

′
1)⌈LI = ρ2 ·(σ

′
2)⌈LI\ρ1 ·(σ

′
1)⌈LI = (ρ2 ·x2 ·σ

′
2)⌈LI\(ρ1 ·

x1 ·σ
′
1)⌈LI = (σ2⌈LI)\(σ1⌈LI).

2

Proposition 5.20
〈L∗, @ 〉 is a well-founded poset.

2

Proof (proposition 5.20)
First we prove that @ is a partial order on L∗. The proof is given by induction on the
number of output actions in σ1. Note that if σ1@ σ2, then σ1 and σ2 have the same
number of output actions (proposition 5.18.1).

◦ Basis: suppose σ1, σ2 ∈ L∗
I , i.e. without output actions in σ1, σ2.

Reflexivity, transitivity and anti-symmetry follow from reflexivity, transitivity and
anti-symmetry of �.

◦ Induction step: suppose σ1 = ρ1 ·x1 ·σ
′
1, σ2 = ρ2 ·x2 ·σ

′
2, σ3 = ρ3 ·x3 ·σ

′
3, with

ρ1, ρ2, ρ3 ∈ L∗
I , x1, x2, x3 ∈ LU , and σ′

1, σ
′
2, σ

′
3 ∈ L∗. This implies that σ′

1, σ
′
2, σ

′
3 have

one output action less than σ1, σ2, σ3, thus according to the induction hypothesis
we can assume the propositions to hold for σ′

1, σ
′
2, σ

′
3.

Reflexivity of @ follows from the reflexivity of � and =, and from the induction
hypothesis.

Transitivity of @: suppose σ1@ σ2 and σ2@ σ3, then

◦ ρ1 � ρ2, ρ2 � ρ3 imply ρ1 � ρ3;

◦ x1 = x2, x2 = x3 imply x1 = x3;



B.5. Chapter 5 (Asynchronous Testing) 223

◦ from σ1@ σ2 : σ′
1@ (ρ2\ρ1)·σ

′
2 (1)

from σ2@ σ3 : σ′
2@ (ρ3\ρ2)·σ

′
3 (2)

using: if σ1@ σ2, σa ∈ L∗
I then σa ·σ1@ σa ·σ2 (3)

applying (3) to (2): (ρ2\ρ1)·σ
′
2@ (ρ2\ρ1)·(ρ3\ρ2)·σ

′
3 (4)

by induction from (1) and (4):σ′
1@ (ρ2\ρ1)·(ρ3\ρ2)·σ

′
3 (5)

and using the fact that ρ2\ρ1 ·ρ3\ρ2 = ρ3\ρ1 (6)
we derive from (5) and (6): σ′

1@ (ρ3\ρ1)·σ
′
3

Anti-symmetry follows from the anti-symmetry of � and =, and from the induction
hypothesis, using the fact that now ρ2\ρ1 = ρ1\ρ2 = ǫ.

Now we prove that @ is well-founded:

∀T : ∅ 6= T ⊆ L∗ : ∃σm ∈ T : ∀σ ∈ T : σ@ σm implies σ = σm

Assume non-well-foundedness:
∃T0 : ∅ 6= T0 ⊆ L∗ : ∀σm ∈ T0 : ∃ρm ∈ T0 : ρm@ σm and ρm 6= σm.
This means that, since T0 6= ∅, there is σ0 ∈ T0, and for this σ0: ∃ρ1 ∈ T0 : ρ1

@
6= σm.

Again for ρ1: ∃ρ2 ∈ T0 : ρ2
@
6= ρ1, and so on. Hence there exists an infinite sequence of

different traces

. . . @
6= ρ4

@
6= ρ3

@
6= ρ2

@
6= ρ1

@
6= σ0 (7)

Define two function α, β : L∗ → N, such that α(σ) gives the number of input actions
in σ, and β(σ) gives the sum of the position indices of the output actions. From the
definition of @ it follows that ρi+1

@
6= ρi implies that α(ρi+1) < α(ρi) or β(ρi+1) <

β(ρi). This means that there exists a sequence

. . . · 〈α(ρ4), β(ρ4)〉 · 〈α(ρ3), β(ρ3)〉 · 〈α(ρ2), β(ρ2)〉 · 〈α(ρ1), β(ρ1)〉 · 〈α(σ0), β(σ0)〉

with decreasing α or β. Since the length of σ0 is finite, both the number of input
actions in σ0 and the sum of the numbers of output actions that follow each input
action in σ0, are finite: α(σ0) and β(σ0) are finite, so this would imply the existence of
an infinite sequence of pairs of decreasing natural numbers. Such a sequence does not
exist (well-foundedness of N), hence the sequence of traces (7) does not exist, hence
the assumption of non-well-foundedness is not correct.

2

Proposition 5.22.1

If σ1@ σ2 and S
σ1
⇒S ′ then [ǫ≪S≪ǫ]

σ2
⇒ [ǫ≪S ′

≪σ2\\σ1 ].
2

Proof (proposition 5.22.1)
The proof is given by induction on the number of output actions in σ1.

◦ Basis: suppose σ1, σ2 ∈ L∗
I .

It follows that σ1@ σ2 iff σ1 � σ2, σ2 = σ1 ·(σ2\\σ1).
Now we have: [ǫ≪S≪ǫ] (∗A1Q∗)

σ1
⇒ [ǫ≪S≪σ1] (∗I2Q∗)
ǫ
⇒ [ǫ≪S ′

≪ǫ] (∗A1Q∗)
σ2\\σ1

⇒ [ǫ≪S ′
≪σ2\\σ1

]



224 Appendix B. Proofs

◦ Induction step: suppose σ1 = ρ1·x1·σ
′
1, σ2 = ρ2·x2·σ

′
2, with ρ1, ρ2 ∈ L∗

I , x1, x2 ∈ LU ,
and σ′

1, σ
′
2 ∈ L∗.

From the definition of σ1@ σ2: ρ1 � ρ2, x1 = x2, σ′
1@ (ρ2\ρ1)·σ

′
2 (1)

From the definition of σ2\\σ1: σ2\\σ1 = ((ρ2\ρ1)·σ
′
2)\\σ

′
1 (2)

Since ρ2 = ρ1 ·(ρ2\ρ1): σ2 = ρ1 ·(ρ2\ρ1)·x1 ·σ
′
2 (3)

From S
σ1
⇒S ′: ∃S1, S2 : S

ρ1
⇒S1

x1
⇒S2

σ′
1
⇒S ′ (4)

Now we have: [ǫ≪S≪ǫ] (∗A1Q, I2Q, (4)∗)
ρ1
⇒ [ǫ≪S1≪ǫ] (∗I3Q, (4)∗)
ǫ
⇒ [x1≪S2≪ǫ]

(5)

Applying the induction hypothesis to σ′
1 and (ρ2\ρ1)·σ

′
2, using (1) and (4):

[ǫ≪S2≪ǫ]
(ρ2\ρ1)·σ′

2
⇒ [ǫ≪S ′

≪((ρ2\ρ1)·σ′
2)\\σ′

1
]

implying [x1≪S2≪ǫ]
(ρ2\ρ1)·x1·σ′

2
⇒ [ǫ≪S ′

≪((ρ2\ρ1)·σ′

2)\\σ′

1
] (6)

Combining (5) and (6): [ǫ≪S≪ǫ]
ρ1
⇒ [x1≪S2≪ǫ]

(ρ2\ρ1)·x1·σ′

2
⇒ [ǫ≪S ′

≪((ρ2\ρ1)·σ′

2)\\σ′

1
]

thus, using (2) and (3): [ǫ≪S≪ǫ]
σ2
⇒ [ǫ≪S ′

≪σ2\\σ1
]

2

Proposition 5.22.2

If [ǫ≪S≪ǫ]
σ2
⇒ [ǫ≪S ′

≪σr
] then ∃σ1 : S

σ1
⇒S ′, σ1@ σ2, and σr = σ2\\σ1.

2

Proof (proposition 5.22.2)
The proof is given by induction on the number of output actions in σ2.

◦ Basis: suppose σ2 ∈ L∗
I .

Since [ǫ≪S≪ǫ]
σ2
⇒ [ǫ≪S≪σ2 ] always holds, [ǫ≪S≪ǫ]

σ2
⇒ [ǫ≪S ′

≪σr
] immediately im-

plies that there must be a prefix σ1 of σ2 (σ1 � σ2), such that S
σ1
⇒S ′ and

σ2 = σ1 ·σr. σ1 has the required properties.

◦ Induction step: suppose σ2 = ρ2 ·x2 ·σ
′
2, with ρ2 ∈ L∗

I , x2 ∈ LU , and σ′
2 ∈ L∗.

We have: [ǫ≪S≪ǫ]
ρ2·x2·σ′

2
⇒ [ǫ≪S ′

≪σr
], implying that somewhere in this derivation

the step S1
x2−−→S2 occurs, for some S1, S2. (1)

This implies that there are σa, ρ1 ∈ L∗
I , with ρ1 � σa � ρ2 such that S

ρ1
⇒S1 and

[ǫ≪S≪ǫ]
σa
⇒ [ǫ≪S1≪σa\ρ1

] τ−→ [x2≪S2≪σa\ρ1
]

(ρ2\σa)·x2·σ′
2
⇒ [ǫ≪S ′

≪σr
] (2)

Taking the last part of this derivation:



B.5. Chapter 5 (Asynchronous Testing) 225

[x2≪S2≪σa\ρ1
]

(ρ2\σa)·x2·σ′

2
⇒ [ǫ≪S ′

≪σr
]

implies [ǫ≪S2≪σa\ρ1
]

(ρ2\σa)·σ′
2
⇒ [ǫ≪S ′

≪σr
]

implies [ǫ≪S2≪ǫ]
(σa\ρ1)·(ρ2\σa)·σ′

2
⇒ [ǫ≪S ′

≪σr
]

implies [ǫ≪S2≪ǫ]
(ρ2\ρ1)·σ′

2
⇒ [ǫ≪S ′

≪σr
]

implies by induction

∃σ′
1 : S2

σ′
1
⇒S ′, σ′

1@ (ρ2\ρ1)·σ
′
2, σr = ((ρ2\ρ1)·σ

′
2)\\σ

′
1 = σ2\\(ρ1 ·x2 ·σ

′
1) (3)

Combining (1), (2), and (3):

S
ρ1
⇒S1

x2−−→S2

σ′
1
⇒S ′

with ρ1 � ρ2, σ′
1@ (ρ2\ρ1)·σ

′
2, hence ρ1 ·x2 ·σ

′
1@ ρ2 ·x2 ·σ

′
2.

Thus, the trace σ1 = ρ1 ·x2 ·σ
′
1 has the required properties.

2

Proposition 5.22.3
QS

σ
⇒ iff ∃S ′, σ′

i, σ
′
u : [ǫ≪S≪ǫ]

σ
⇒ [σ′

u≪S ′
≪σ′

i
]

iff ∃S ′′, σ′′
i : [ǫ≪S≪ǫ]

σ
⇒ [ǫ≪S ′′

≪σ′′

i
]

2

Proof (proposition 5.22.3)

QS

σ
⇒ iff ∃S ′, σ′

i, σ
′
u : [ǫ≪S≪ǫ]

σ
⇒ [σ′

u≪S ′
≪σ′

i
]:

if follows from the definitions in table 1.1;
only if uses the fact that for any derivation Q

σ
⇒Q′, with σ ∈ L∗ and Q a queue

context, Q′ is a queue context too (proof of proposition 5.11.1).

∃S ′, σ′
i, σ

′
u : [ǫ≪S≪ǫ]

σ
⇒ [σ′

u≪S ′
≪σ′

i
] iff ∃S ′′, σ′′

i : [ǫ≪S≪ǫ]
σ
⇒ [ǫ≪S ′′

≪σ′′

i
]:

only if : ◦ Let σ ∈ L∗
I : take S ′′ = S, and σ′′

i = σ.

◦ Let σ = σ′ ·x·ρ, with σ′ ∈ L∗, x ∈ LU , and ρ ∈ L∗
I , then somewhere in the

left-hand side derivation the following steps must occur:

[σv≪S1≪σj
] τ−→ [σv·x≪S2≪σj

] (1)
[x·σw≪S3≪σk

] x−→ [σw≪S3≪σk
] (2)

for some σj , σk ∈ L∗
I , σv, σw ∈ L∗

U , and S1, S2, S3.

Let σa ∈ L∗ label the derivation from initial state to (1), and σb ∈ L∗ the
derivation from (1) to (2), then we have:

[ǫ≪S≪ǫ]
σa

⇒ [σv≪S1≪σj
]

τ−→ [σv·x≪S2≪σj
]

σb
⇒ [x·σw≪S3≪σk

]
x−→ [σw≪S3≪σk

]
ρ
⇒ [σ′

u≪S ′
≪σ′

i
]



226 Appendix B. Proofs

It follows that σv = σb⌈LU and that also the following derivation is possible:

[(σb⌈LU )·x≪S2≪σj
]

σb·x·ρ
⇒ [ǫ≪S2≪σj ·(σb⌈LI)·ρ]

Consequently, S ′′ = S2, and σ′′
i = σj·(σb⌈LI)·ρ have the required properties.

if : Take S ′ = S ′′, σ′
i = σ′′

i , and σ′
u = ǫ.

2

Corollary 5.23

1. σ1 @ σ2 and σ1 ∈ traces(S) imply σ2 ∈ traces(QS)

2. σ1 @ σ2 and σ1 ∈ traces(QS) imply σ2 ∈ traces(QS)

3. σ2 ∈ traces(QS) implies ∃σ1 ∈ traces(S) : σ1 @ σ2
2

Proof (corollary 5.23)

1. A direct consequence of proposition 5.22.1.

2. σ1 ∈ traces(QS) (∗ corollary 5.23.3 ∗)
implies ∃σ0 ∈ traces(S) : σ0 @ σ1 (∗ transitivity of @, σ1 @ σ2 ∗)
implies ∃σ0 ∈ traces(S) : σ0 @ σ2 (∗ corollary 5.23.1 ∗)
implies σ2 ∈ traces(QS)

3. σ2 ∈ traces(QS) (∗ proposition 5.22.3 ∗)

implies ∃S ′′, σ′′
i : QS

σ2
⇒ [ǫ≪S ′′

≪σ′′

i
] (∗ proposition 5.22.2 ∗)

implies ∃σ1 ∈ traces(S) : σ1 @ σ2
2

Proposition 5.25

1. tracks(S) ⊆ traces(S) ⊆ traces(QS) ⊆ L∗

2. traces(QS) = traces(S) = tracks(S)

3. tracks(S) = min@(traces(QS))

4. A track is either equal to ǫ, or it ends with an output action.
2

Proof (proposition 5.25)

1. tracks(S) ⊆ traces(S) by definition 5.24;
traces(S) ⊆ traces(QS) from corollary 5.23.1 and reflexivity of @;
traces(QS) ⊆ L∗ by definition of traces .

2. traces(QS) = traces(S): from corollary 5.23.1 and 5.23.3;
traces(S) = tracks(S): using proposition A.2 with
min@(traces(S)) = tracks(S) = min@(tracks(S)).

3. min@(traces(S)) = min@(traces(QS)): application of 5.25.2 (first part) to propo-
sition A.1.



B.5. Chapter 5 (Asynchronous Testing) 227

4. Assume a track σ ends with an input action: σ = σ′·a. Then σ ∈ traces(S), hence
σ′ ∈ traces(S). Moreover σ′@σ and σ′ 6= σ, hence σ is not minimal, which leads
to the contradiction σ 6∈ tracks(S).

2

Theorem 5.26

tracks(S1) = tracks(S2) iff traces(QS1) = traces(QS2)

2

Proof (theorem 5.26)
From proposition A.2, using

◦ 〈L∗, @〉 is a well-founded poset (∗ proposition 5.20 ∗);

◦ traces(QS) = traces(S) (∗ proposition 5.25.2 ∗);

◦ tracks(S) = min@(traces(S)) (∗ definition 5.24 ∗)
2

B.5.3 Section 5.6 (Output Deadlocks of Queue Contexts)

Proposition 5.29

1. δ-temp(S) and δ-perm(S) form a partition of δ-traces(S)

2. δ-traces(S1) = δ-traces(S2)
iff δ-temp(S1) = δ-temp(S2) and δ-perm(S1) = δ-perm(S2) 2

Proof (proposition 5.29)
Follows immediately from the definitions of δ-perm, δ-temp, and δ-traces (definitions
5.28 and 5.13.2).

2

Proposition 5.31
δ-perm(S1) = δ-perm(S2) iff P-tracks(S1) = P-tracks(S2)

2

Proof (proposition 5.31)
δ-perm(S) is right-closed with respect to @:
let σ ∈ δ-perm(S) and σ @ σ′, then δS(σ′) (∗ definition of δ-perm ∗);
let σ′′ ∈ L∗, σ′@ σ′′, then σ@σ′′ (∗ transitivity of @ ∗), so δ(σ′′).
Together: δS(σ′) and ∀σ′′ ∈ L∗ : σ′@ σ′′ implies δ(σ′′), imply σ′ ∈ δ-perm(S).

The proposition follows by applying proposition A.2, using well-foundedness of 〈L∗, @〉
(proposition 5.20), right-closedness of δ-perm(S1) and δ-perm(S2), and definition 5.30:
P-tracks(S) = min@(δ-perm(S)).

2

Proposition 5.33

1. 〈L∗, |@| 〉 is a well-founded poset.

2. σ1 @ σ2 implies σ1 ·(σ2\\σ1) |@| σ2



228 Appendix B. Proofs

3. If σ1 |@| σ2 and S
σ1
⇒S ′ then [ǫ≪S≪ǫ]

σ2
⇒ [ǫ≪S ′

≪ǫ]

4. If [ǫ≪S≪ǫ]
σ2
⇒ [ǫ≪S ′

≪ǫ] then ∃σ1 : S
σ1
⇒S ′ and σ1 |@| σ2

5. If σ1 |@| σ2 and QS

σ1
⇒Q′ then QS

σ2
⇒Q′

6. If δS(σ1) and σ1 |@| σ2 then δS(σ2)
2

Proof (proposition 5.33)

1. Follows from the fact that |@| is the intersection of a well-founded partial order
(@) and an equivalence relation (| · | = | · |).

2. The proof is given by induction on the number of output actions in σ1:

◦ Basis: suppose σ1 ∈ L∗
I and σ1 @ σ2.

Then σ1 � σ2 and σ2\\σ1 = σ2\σ1, so σ1 ·(σ2\\σ1) = σ1 ·(σ2\σ1) = σ2.
Because of reflexivity of |@| we conclude σ1 ·(σ2\\σ1) |@| σ2.

◦ Induction step: suppose σ1 = ρ1·x1·σ
′
1, σ2 = ρ2·x2·σ

′
2, (with ρ1, ρ2 ∈ L∗

I , x1, x2 ∈
LU , σ′

1, σ
′
2 ∈ L∗), and σ1 @ σ2, then ρ1 � ρ2, x1 = x2, σ

′
1 @ (ρ2\ρ1) ·σ

′
2, σ2\\σ1 =

((ρ2\ρ1)·σ
′
2)\\σ

′
1.

Now: σ1 ·(σ2\\σ1) = ρ1 ·x1 ·σ
′
1 ·(((ρ2\ρ1)·σ

′
2)\\σ

′
1).

Since σ′
1 contains one output action less than σ1, we can apply the induction

hypothesis:

σ′
1 @ (ρ2\ρ1)·σ

′
2 implies σ′

1 ·(((ρ2\ρ1)·σ
′
2)\\σ

′
1) |@| (ρ2\ρ1)·σ

′
2

implying (∗ definitions of @ and | · | ∗) :
ρ1·x1·σ

′
1·(((ρ2\ρ1)·σ

′
2)\\σ

′
1) |@| ρ1·x1·(ρ2\ρ1)·σ

′
2 |@| ρ1·(ρ2\ρ1)·x1·σ

′
2 = ρ2·x2·σ

′
2 = σ2

Because of transitivity of |@| we conclude σ1 ·(σ2\\σ1) |@| σ2.

3. Using proposition 5.22.1, together with the fact that σ1 |@| σ2 implies σ2\\σ1 = ǫ,
which follows from proposition 5.33.2.

4. Using proposition 5.22.2, and σ1 @ σ2 and σ2\\σ1 = ǫ imply |σ1| = |σ2|, which
follows from proposition 5.33.2.

5. We prove (1), which is more general. The proposition follows with σi = σu = ρ = ǫ.
Let S ∈ LTS, Q′ a queue-context, σ1, σ2 ∈ L∗, σi, ρ ∈ L∗

I , σu ∈ L∗
U , then

[σu≪S≪σi
]

σ1
⇒Q′ and σ1 |@| ρ·σ2 imply [σu≪S≪σi·ρ]

σ2
⇒Q′ (1)

The proof is given by induction on the number of output actions in σ1:

◦ Basis: suppose σ1 ∈ L∗
I and σ1 |@| ρ·σ2.

Then σ1 = ρ·σ2, hence [σu≪S≪σi
]

σ1
⇒Q′

iff [σu≪S≪σi
]

ρ·σ2
⇒Q′

implies [σu≪S≪σi·ρ]
σ2
⇒Q′

◦ Induction step: suppose σ1 = ρ1·x1·σ
′
1, σ2 = ρ2·x2·σ

′
2, (with ρ1, ρ2 ∈ L∗

I , x1, x2 ∈
LU , σ′

1, σ
′
2 ∈ L∗), and σ1 |@| ρ·σ2, then (∗definition |@| , @ ∗):



B.5. Chapter 5 (Asynchronous Testing) 229

ρ1 � ρ·ρ2, x1 = x2, σ′
1 @ ((ρ·ρ2)\ρ1)·σ

′
2, and |σ1| = |ρ·σ2| = |ρ| + |σ2|.

Moreover: |σ′
1|

= |σ1| − |ρ1| − |x1|
= (|ρ| + |σ2|) − |ρ1| − 1
= |ρ| + (|ρ2| + |x2| + |σ′

2|) − |ρ1| − 1
= |((ρ·ρ2)\ρ1)·σ

′
2|

and therefore σ′
1 |@| ((ρ·ρ2)\ρ1)·σ

′
2.

[σu≪S≪σi
]

σ1
⇒Q′

implies ∃S1, σi1 , σu1 : [σu≪S≪σi
]

ρ1
⇒ [x1·σu1≪

S1≪σi1
]

x1−−→ [σu1≪
S1≪σi1

]
σ′
1
⇒ Q′

(2)

implies [σu≪S≪σi
]

ρ1·((ρ·ρ2)\ρ1)
⇒ [x1·σu1≪

S1≪σi1
·((ρ·ρ2)\ρ1)]

x1−−→ [σu1≪
S1≪σi1

·((ρ·ρ2)\ρ1)]

(3)

Because σ′
1 |@| ((ρ·ρ2)\ρ1)·σ

′
2, and σ′

1 contains one output action less then σ1,
the induction hypothesis can be applied to the last transition of (2):

[σu1≪
S1≪σi1

·((ρ·ρ2)\ρ1)]
σ′
2
⇒Q′ (4)

(3), (4), and ρ1 ·((ρ·ρ2)\ρ1) = ρ·ρ2 imply

[σu≪S≪σi·ρ]
ρ2
⇒ [x2·σu1≪

S1≪σi1
·((ρ·ρ2)\ρ1)]

x2·σ′

2
⇒Q′

6. δS(σ1) iff ∃Q′ : QS

σ1
⇒Q′ and ∀x ∈ LU : Q′

x

6⇒ .

From proposition 5.33.5 it follows that QS

σ2
⇒Q′,

and thus ∃Q′ ( QS

σ2
⇒Q′ and ∀x ∈ LU : Q′

x

6⇒ ), so δS(σ2).
2

Proposition 5.35
For S1, S2 ∈ LTS such that P-tracks(S1) = P-tracks(S2):
δ-temp(S1) = δ-temp(S2) iff T-tracks(S1) = T-tracks(S2)

2

Proof (proposition 5.35)

only if : Follows immediately from the definition of T-tracks.

if : Let σ ∈ δ-temp(S1), then by well-foundedness of |@| : ∃σ0 ∈ T-tracks(S1) :
σ0 |@| σ.
So σ0 ∈ T-tracks(S2), so δS2(σ0), and since σ0 |@| σ: δS2(σ) (∗ prop. 5.33.6 ∗).
This means that σ ∈ δ-traces(S2), so (∗ proposition 5.29.1 ∗):
σ ∈ δ-temp(S2) or σ ∈ δ-perm(S2).
Since σ ∈ δ-temp(S1) and δ-perm(S1) = δ-perm(S2) (∗ proposition 5.31 ∗):
σ ∈ δ-temp(S2).

2



230 Appendix B. Proofs

Theorem 5.36

S1 ≈Q S2 iff tracks(S1) = tracks(S2) and
P-tracks(S1) = P-tracks(S2) and
T-tracks(S1) = T-tracks(S2)

2

Proof (theorem 5.36)
S1 ≈Q S2

iff (∗ theorem 5.15 ∗)
traces(QS1) = traces(QS2) and
δ-traces(S1) = δ-traces(S2)

iff (∗ theorem 5.26 and proposition 5.29.2 ∗)
tracks(S1) = tracks(S2) and
δ-temp(S1) = δ-temp(S2) and
δ-perm(S1) = δ-perm(S2)

iff (∗ propositions 5.31 and 5.35 ∗)
tracks(S1) = tracks(S2) and
P-tracks(S1) = P-tracks(S2) and
T-tracks(S1) = T-tracks(S2) 2

Proposition 5.38
Let S ∈ LTS, σ ∈ L∗, then S after σ refuses LU implies δS(σ).

2

Proof (proposition 5.38)
S after σ refuses LU

implies (∗ definition 3.4 ∗)

∃S ′ : S
σ
⇒S ′ and ∀x ∈ LU : S ′

x

6⇒
implies (∗ σ@σ, proposition 5.22.1, definition 5.4 ∗)

∃S ′ : [ǫ≪S≪ǫ]
σ
⇒ [ǫ≪S ′

≪ǫ] and ∀x ∈ LU : [ǫ≪S ′
≪ǫ]

x

6⇒
implies (∗ definition 5.4 ∗)

∃Q′ : QS

σ
⇒Q′ and ∀x ∈ LU : Q′

x

6⇒
implies (∗ definition 3.4 ∗)

QS after σ refuses LU

implies (∗ definition 5.13.2 ∗)
δS(σ) 2

Proposition 5.39
Let S ∈ LTS, σ ∈ L∗, a ∈ LI , then

S after σ refuses {a}∪LU implies σ ·a ∈ δ-perm(S)

2

Proof (proposition 5.39)
S after σ refuses {a}∪LU

implies ∃S ′ : S
σ
⇒S ′ and ∀b ∈ {a}∪LU : S ′

b

6⇒



B.5. Chapter 5 (Asynchronous Testing) 231

implies ∃S ′ : [ǫ≪S≪ǫ]
σ·a
⇒ [ǫ≪S ′

≪a] and ∀x ∈ LU : [ǫ≪S ′
≪a]

x

6⇒ (1)

implies ∃Q′ : Q
σ·a
⇒Q′ and ∀x ∈ LU : Q′

x

6⇒
implies δS(σ ·a)

Moreover, it follows from (1) that for all ρ ∈ L∗
I :

[ǫ≪S ′
≪a]

ρ
⇒ [ǫ≪S ′

≪a·ρ]
x

6⇒ for any x ∈ LU , so for all ρ ∈ L∗
I : δS(σ ·a·ρ) (2)

Now we have to prove that σ ·a ∈ δ-perm:
let σ′ ∈ L∗, σ ·a @ σ′, then σ ·a·(σ′\\(σ ·a)) |@| σ′ (∗ proposition 5.33.2 ∗),
and δS(σ ·a·(σ′\\(σ ·a))) (∗ σ′\\(σ ·a) ∈ L∗

I , and (2) ∗).
Using proposition 5.33.6 we conclude that δS(σ′) , so σ ·a ∈ δ-perm(S).

2

Proposition 5.41

1. δ-traces(S) = δ-empty(S) ∪ δ-block(S)

2. Not for all S: δ-empty(S) ∩ δ-block(S) = ∅

3. S1 ≈Q S2 does not imply δ-empty(S1) = δ-empty(S2),
nor δ-block(S1) = δ-block(S2)

2

Proof (proposition 5.41)
To prove:

δS(σ) iff ( ∃σ′ ∈ traces(S) : σ′ |@| σ and S after σ′ refuses LU )
or ( ∃σ′ ∈ traces(S), a ∈ LI : σ′ ·a @ σ and S after σ′ refuses {a}∪LU )

1. if :∃σ′ ∈ traces(S) : σ′ |@| σ and S after σ′ refuses LU :
S after σ′ refuses LU implies δS(σ′) (∗ proposition 5.38 ∗);
δS(σ′) and σ′ |@| σ imply δS(σ) (∗ proposition 5.33.6 ∗).

∃σ′ ∈ traces(S), a ∈ LI : σ′ ·a @ σ and S after σ′ refuses {a}∪LU :
S after σ′ refuses {a}∪LU implies σ′ ·a ∈ δ-perm(S) (∗prop. 5.39∗);
σ′ ·a ∈ δ-perm(S) and σ′ ·a @ σ imply δS(σ) (∗definition of δ-perm∗).

only if :
δS(σ)

implies [ǫ≪S≪ǫ] after σ refuses LU

implies ∃S ′, σ′
i, σ

′
u : [ǫ≪S≪ǫ]

σ
⇒ [σ′

u≪S ′
≪σ′

i
] and ∀x ∈ LU : [σ′

u≪S ′
≪σ′

i
]

x

6⇒

implies ∃S ′, σ′
i : [ǫ≪S≪ǫ]

σ
⇒ [ǫ≪S ′

≪σ′

i
] and ∀x ∈ LU : [ǫ≪S ′

≪σ′

i
]

x

6⇒

implies ∃S ′, σ′
i : [ǫ≪S≪ǫ]

σ
⇒ [ǫ≪S ′

≪σ′

i
] and ∀ρ � σ′

i, ∀x ∈ LU : S ′
ρ·x

6⇒

Now distinguish between S ′
σ′

i
⇒ and S ′

σ′

i

6⇒ :

S ′
σ′

i

⇒ :



232 Appendix B. Proofs

∃S ′, σ′
i : [ǫ≪S≪ǫ]

σ
⇒ [ǫ≪S ′

≪σ′

i
]

and ∀ρ � σ′
i, ∀x ∈ LU : S ′

ρ·x

6⇒

implies ∃S ′, σ′
i : [ǫ≪S≪ǫ]

σ
⇒ [ǫ≪S ′

≪σ′

i
]

and ∃S ′′ : S ′
σ′

i
⇒S ′′ and ∀x ∈ LU : S ′′

x

6⇒

implies ∃S ′′ : [ǫ≪S≪ǫ]
σ
⇒ [ǫ≪S ′′

≪ǫ] and ∀x ∈ LU : S ′′
x

6⇒

implies ∃S ′′, σ′ : S
σ′

⇒S ′′ and σ′ |@| σ and ∀x ∈ LU : S ′′
x

6⇒
implies ∃σ′ ∈ traces(S) : σ′ |@| σ and S after σ′ refuses LU

S ′
σ′

i

6⇒ :

then ∃a ∈ LI , ρ1, ρ2 ∈ L∗
I , S

′′ : σ′
i = ρ1 ·a·ρ2 and S ′ ρ1

⇒S ′′
a

6⇒

Now: ∃S ′, σ′
i : [ǫ≪S≪ǫ]

σ
⇒ [ǫ≪S ′

≪σ′

i
]

and ∀ρ � σ′
i, ∀x ∈ LU : S ′

ρ·x

6⇒
implies ∃a ∈ LI , ρ1, ρ2 ∈ L∗

I , S
′, S ′′ :

[ǫ≪S≪ǫ]
σ
⇒ [ǫ≪S ′′

≪a·ρ2 ] and

∀x ∈ LU : S ′
ρ1·x

6⇒ and

S ′ ρ1
⇒S ′′

a

6⇒
implies ∃a ∈ LI , ρ1, ρ2 ∈ L∗

I , S
′′, σ′ :

S
σ′

⇒S ′′ and
σ′ @ σ and
a·ρ2 = σ\\σ′ and

∀µ ∈ {a}∪LU : S ′′
µ

6⇒
implies ∃σ′ ∈ traces(S), a ∈ LI :

σ′ ·a @ σ and S after σ′ refuses {a}∪LU

2. See example 5.43.

3. See example 5.43.
2

Proposition 5.44

1. δ-block(S) ⊆ δ-perm(S)

2. δ-temp(S) ⊆ δ-empty(S)

3. T-tracks(S) = E-tracks(S)∩ δ-temp(S) (and hence T-tracks(S) ⊆ E-tracks(S))

4. σ ∈ T-tracks(S) implies S after σ refuses LU (and hence σ ∈ traces(S))

5. σ ∈ P-tracks(S) implies
σ ∈ δ-empty(S)

or ( ∃σ′ ∈ traces(S), a ∈ LI : σ′ ·a = σ and S after σ′ refuses {a}∪LU )

6. σ ∈ δ-perm(S) iff δS(σ) and ∀a ∈ LI : σ ·a ∈ δ-perm(S)
2



B.5. Chapter 5 (Asynchronous Testing) 233

Proof (proposition 5.44)

1. σ ∈ δ-block(S)
implies ∃σ′ ∈ traces(S), a ∈ LI : σ′ ·a @ σ and S after σ′ refuses {a}∪LU

implies (∗ proposition 5.39 ∗)
σ′ ·a ∈ δ-perm(S) and σ′ ·a @ σ

implies (∗ definition 5.28.2 ∗)
σ ∈ δ-perm(S)

2. σ ∈ δ-temp(S)
implies (∗ proposition 5.29.1 ∗)

σ 6∈ δ-perm(S)
implies (∗ proposition 5.44.1 ∗)

σ 6∈ δ-block(S)
implies (∗ proposition 5.41.1 ∗)

σ ∈ δ-empty(S)

3. ⊆: Let σ ∈ T-tracks(S) then σ ∈ δ-temp(S) (definition 5.34). Moreover, we have
to prove that σ ∈ E-tracks(S), which means that (definition 5.40.3):

S after σ refuses LU and
(∀σ′′ : S after σ′′ refuses LU and σ′′ |@| σ implies σ′′ = σ)

(1)

σ ∈ T-tracks(S) implies σ ∈ δ-temp(S) (2)
and ∀σ′ ∈ δ-temp(S) : σ′ |@| σ implies σ′ = σ (3)
and ∃σ1 : σ @ σ1 and not δS(σ1) (4)

Using (2), (3), and (4) the two parts of (1) are proved:

S after σ refuses LU :
(2)

implies (∗ proposition 5.44.2 ∗)
σ ∈ δ-empty(S)

implies (∗ definition 5.40.1 ∗)
∃σ2 ∈ traces(S) : σ2 |@| σ and S after σ2 refuses LU

implies (∗ proposition 5.38 ∗)
δS(σ2)

implies (∗ σ2 |@| σ @ σ1, so σ2 @ σ1, (4) ∗)
σ2 ∈ δ-temp(S)

implies (∗ σ2 |@| σ, (3) ∗)
σ2 = σ

implies (∗ S after σ2 refuses LU ∗)
S after σ refuses LU

∀σ′′ : S after σ′′ refuses LU and σ′′ |@| σ implies σ′′ = σ:
Let σ′′ ∈ L∗, such that S after σ′′ refuses LU and σ′′ |@| σ, then



234 Appendix B. Proofs

S after σ′′ refuses LU

implies (∗ proposition 5.38 ∗)
δS(σ′′)

implies (∗ σ′′ @ σ, (2) ∗)
σ′′ ∈ δ-temp(S)

implies (∗ (3) ∗)
σ′′ = σ

⊇: Let σ ∈ E-tracks(S) ∩ δ-temp, then we have to prove

σ ∈ δ-temp(S) and ∀σ′′ ∈ δ-temp(S) : σ′′ |@| σ implies σ′′ = σ

σ ∈ δ-temp(S): Immediately.

∀σ′′ ∈ δ-temp(S) : σ′′ |@| σ implies σ′′ = σ:
Let σ′′ ∈ δ-temp(S) and σ′′ |@| σ, (∗ prop. 5.44.2 ∗)
then σ′′ ∈ δ-empty(S).
By definition 5.40.1:
∃σ1 ∈ traces(S) : σ1 |@| σ′′ and S after σ1 refuses LU,
hence σ1 |@| σ′′ |@| σ.
Since σ ∈ E-tracks(S):
∀σ′ ∈ L∗ : S after σ′ refuses LU and σ′ |@| σ implies σ′ = σ;
we conclude σ1 = σ′′ = σ.

4. Directly from proposition 5.44.3 and definition 5.40.3.

5. σ ∈ P-tracks(S) implies σ ∈ δ-empty(S) or σ ∈ δ-block(S) (∗ prop. 5.41.1 ∗).
If σ ∈ δ-block(S) then
∃σ′ ∈ traces(S), a ∈ LI : σ′ ·a @ σ and S after σ′ refuses {a}∪LU

implying σ′ ·a ∈ δ-perm(S) (∗ proposition 5.39 ∗)
By definition of P-tracks , ∀σ′′ ∈ δ-perm(S) : σ′′ @ σ implies σ′′ = σ, so σ′·a = σ.

6. only if : Straightforward from the fact that δ-perm(S) is right-closed with respect
to @, using σ @ σ ·a.

if : Let δS(σ) and ∀a ∈ LI : σ ·a ∈ δ-perm(S), then we have to prove that
σ @ σ′ implies δS(σ′) for arbitrary σ′. Let σ′ ∈ L∗, such that σ @ σ′, and
distinguish between |σ| = |σ′| and |σ| 6= |σ′|:

|σ| = |σ′|: σ |@| σ′ implies δS(σ′) (∗ δS(σ), proposition 5.33.6 ∗).

|σ| 6= |σ′|: now ∃a ∈ LI , σi ∈ L∗
I : σ′\\σ = a·σi.

We have (∗ proposition 5.33.2 ∗) : σ·a @ σ·a·σi |@| σ′ and σ·a ∈ δ-perm(S),
which implies δS(σ′).

2

B.5.4 Section 5.7 (Queue Implementation Relations)

Proposition 5.51.1 (Equalities)

1. ≤te = ≤tr ∩ conf



B.5. Chapter 5 (Asynchronous Testing) 235

2. ≤O = ≤Q
te

3. ≤O = ≤Q
tr ∩ confQ

4. ≤O = ≤outputs ∩ ≤δ

5. ≤Q
tr = ≤outputs

2

Proof (proposition 5.51.1)

5.51.1.1: Proposition 3.13.1.

5.51.1.2: Analogous to the proof of theorem 5.14:
I ≤Q

te S
iff (∗ definition 5.49.1 ∗)

QI ≤te QS

iff (∗ theorem 3.9 ∗)
∀σ ∈ L∗, ∀A ⊆ L : QS after σ must A implies QI after σ must A

iff (∗ proposition 5.11.2 ∗)
∀σ ∈ L∗, ∀A ⊆ LU : QS after σ must A implies QI after σ must A

iff (∗ lemma B.3 ∗)
∀σ ∈ L∗, ∀A ⊆ LU : OS(σ) ⊆ A implies OI(σ) ⊆ A

iff (∗ lemma B.4 ∗)
∀σ ∈ L∗ : OI(σ) ⊆ OS(σ)

5.51.1.3: Directly from definition 5.49 and propositions 5.51.1.2 and 5.51.1.1.

5.51.1.4: Directly from definitions 5.13.3 and 5.50.

5.51.1.5: To be proved:

traces(QI) ⊆ traces(QS) iff ∀σ ∈ L∗ : outputsI(σ) ⊆ outputsS(σ)

only-if : Let σ ∈ L∗, x ∈ outputsI(σ), then, according to definition 5.13.1:

QI

σ·x
⇒

implies QS

σ·x
⇒

implies x ∈ outputsS(σ)

if : First, let σ ∈ traces(QI) and σ ∈ L∗
I :

according to proposition 5.11.1, σ ∈ traces(QS) always holds.
Secondly, let σ ∈ traces(QI) and σ = σ′ ·x·ρ, with σ′ ∈ L∗, x ∈ LU , ρ ∈ L∗

I :

QI

σ′·x·ρ
⇒ (∗ table 1.1 ∗)

implies QI

σ′·x
⇒ (∗ definition 5.13.1 ∗)

implies x ∈ outputsI(σ
′) (∗ premiss ∗)

implies x ∈ outputsS(σ′) (∗ definition 5.13.1 ∗)

implies QS

σ′·x
⇒ (∗ proposition 5.11.1 ∗)

implies QS

σ′·x·ρ
⇒ (∗ definition 1.9 ∗)

implies σ ∈ traces(QS)
2



236 Appendix B. Proofs

Proposition 5.51.2 (Inclusions)

1. ≤te ⊆ ≤tr

2. ≤te ⊆ conf

3. ≤te ⊆ ≤O

4. ≤tr ⊆ ≤Q
tr

5. ≤O ⊆ ≤Q
tr

6. ≤O ⊆ ≤δ

7. ≤O ⊆ confQ
2

Proof (proposition 5.51.2)

5.51.2.1: Directly from proposition 5.51.1.1.

5.51.2.2: Directly from proposition 5.51.1.1.

5.51.2.3: To be proved:

∀σ ∈ L∗, ∀A ⊆ L : I after σ refuses A implies S after σ refuses A
implies ∀σ ∈ L∗ : OI(σ) ⊆ OS(σ)

Let σ ∈ L∗, x ∈ OI(σ), then x = δ, or x ∈ LU :

x = δ: This means that δI(σ) holds; according to proposition 5.41.1 one of the
following cases holds:

(1) ∃σ′ ∈ traces(I) : σ′ |@| σ and I after σ′ refuses LU

implying (∗ 5.51.2.1: traces(I) ⊆ traces(S) and
I after σ′ refuses LU implies S after σ′ refuses LU ∗)

∃σ′ ∈ traces(S) : σ′ |@| σ and S after σ′ refuses LU

implies δS(σ)
implies δ ∈ OS(σ)

(2) ∃σ′ ∈ traces(I), a ∈ LI : σ′ ·a @ σ and I after σ′ refuses {a}∪LU

implying (∗ 5.51.2.1: traces(I) ⊆ traces(S) and
I after σ′ refuses {a}∪LU implies
S after σ′ refuses {a}∪LU ∗)

∃σ′ ∈ traces(S), a ∈ LI :
σ′ ·a @ σ and S after σ′ refuses {a} ∪ LU

implies δS(σ)
implies δ ∈ OS(σ)

x ∈ LU : x ∈ OI(σ) and x ∈ LU (∗ definition 5.13 ∗)
implies σ ·x ∈ traces(QI) (∗ corollary 5.23.3 ∗)
implies ∃σ′ ∈ traces(I) : σ′@ σ ·x (∗ traces(I) ⊆ traces(S) ∗)
implies ∃σ′ ∈ traces(S) : σ′@ σ ·x (∗ corollary 5.23.1 ∗)
implies σ ·x ∈ traces(QS) (∗ definition 5.13 ∗)
implies x ∈ OS(σ)



B.5. Chapter 5 (Asynchronous Testing) 237

5.51.2.4: To be proved: traces(I) ⊆ traces(S) implies traces(QI) ⊆ traces(QS)
Let σ ∈ traces(QI), then (∗ corollary 5.23.3 ∗):

∃σ′ ∈ traces(I) : σ′@ σ (∗ premiss ∗)
implies ∃σ′ ∈ traces(S) : σ′@ σ (∗ corollary 5.23.1 ∗)
implies σ ∈ traces(QS)

5.51.2.5: Directly from proposition 5.51.1.3.

5.51.2.6: Directly from proposition 5.51.1.4.

5.51.2.7: Directly from proposition 5.51.1.3.
2

Proposition 5.51.3 (Inequalities)

1. ≤te 6= ≤tr

2. ≤te 6= conf

3. ≤te 6= ≤O

4. ≤tr 6= ≤Q
tr

5. ≤O 6= ≤Q
tr

6. ≤O 6= ≤δ

7. ≤O 6= confQ

2

Proof (proposition 5.51.3)
Figure B.1:

5.51.3.1: S1 6≤te S2 and S1 ≤tr S2.

5.51.3.2: S2 6≤te S1 and S2 conf S1.

5.51.3.3: S1 6≤te S2 and S1 ≤O S2.

5.51.3.4: S6 6≤tr S5 and S6 ≤
Q
tr S5.

5.51.3.5: S4 6≤O S1 and S4 ≤
Q
tr S1.

5.51.3.6: S8 6≤O S7 and S8 ≤δ S7.

5.51.3.7: S3 6≤O S1 and S3 confQS1.
2

Proposition 5.51.4 (Distinctions)

1. ≤tr 6= conf

2. ≤tr 6= ≤O

3. conf 6= ≤O

4. conf 6= confQ

5. conf 6= ≤δ

6. conf 6= ≤Q
tr



238 Appendix B. Proofs

7. ≤Q
tr 6= confQ

8. ≤Q
tr 6= ≤δ

9. confQ 6= ≤δ
2

Proof (proposition 5.51.4)
Figure B.1:

5.51.4.1: S2 6≤tr S1 and S2 conf S1; S1 ≤tr S2 and S1 /conf S2.

5.51.4.2: S6 6≤tr S7 and S6 ≤O S7; S7 ≤tr S5 and S7 6≤O S5.

5.51.4.3: S1 /conf S2 and S1 ≤O S2; S2 conf S1 and S2 6≤O S1.

5.51.4.4: S1 /conf S2 and S1 confQS2; S2 conf S1 and S2 /confQS1.

5.51.4.5: S8 /conf S5 and S8 ≤δ S5; S3 conf S1 and S3 6≤δ S1.

5.51.4.6: S1 /conf S2 and S1 ≤
Q
tr S2; S5 conf S7 and S5 6≤

Q
tr S7.

5.51.4.7: S3 6≤
Q
tr S1 and S3 confQS1; S4 ≤

Q
tr S1 and S4 /confQS1.

5.51.4.8: S8 6≤
Q
tr S7 and S8 ≤δ S7; S7 ≤

Q
tr S5 and S7 6≤δ S5.

5.51.4.9: S8 /confQS5 and S8 ≤δ S5; S3 confQ S1 and S3 6≤δ S1.
2

r

r
r rr

r

r r

r
r r
r
r
rr

r
r r

r r
��
��

r
r
rr
r

r
r
r
r
r
r

r
r

r

r

r r r
r
r

r

r�
��

A
AA

A
AA

�
��

A
AA

�
��

-

�
��

S
SS

�
��S

SS �
��S

SS �
��S

SS

a a x a

yx

a

x

a

x x

x a

S2 S3 S4 S5 S6 S7 S8

y

a

y

x

x

a

y

x

a

y

τxa x y

S1

S10S9 S11 S12 S13

τ a

Figure B.1: Example specifications and implementations.

Proposition 5.51.5 (Finite behaviour)
For implementations with finite behaviour: ≤δ = ≤O

2

Proof (proposition 5.51.5)
An implementation I with finite behaviour has traces of finite length (definition 1.11.4),



B.5. Chapter 5 (Asynchronous Testing) 239

implying that I deadlocks after performing a finite number of actions:

∀σ ∈ traces(I) : ∃ρ ∈ L∗ : I after σ ·ρ refuses L (1)

We prove ≤δ ⊆≤outputs , from which ≤δ =≤O can be concluded, using proposition
5.51.1.4:

( ∀σ ∈ L∗ : δI(σ) implies δS(σ) ) implies ( ∀σ ∈ L∗ : outputsI(σ) ⊆ outputsS(σ) )

Let σ ∈ L∗, x ∈ outputsI(σ), then:

QI

σ·x
⇒ (∗ corollary 5.23.3 ∗)

implies ∃σ′ ∈ traces(I) : σ′@ σ ·x (∗ (1) ∗)
implies ∃ρ : I after σ′ ·ρ refuses L (∗ proposition 3.5.2 ∗)
implies I after σ′ ·ρ refuses LU (∗ proposition 5.38 ∗)
implies δI(σ

′ ·ρ) (∗ premiss ∗)
implies δS(σ′ ·ρ) (∗ definition 5.13.2 ∗)
implies QS after σ′ ·ρ refuses LU (∗ definition 3.4.1 ∗)

implies QS

σ′·ρ
⇒ (∗ table 1.1 ∗)

implies QS

σ′

⇒ (∗ corollary 5.23.2 ∗)

implies QS

σ·x
⇒ (∗ definition 5.13.1 ∗)

implies x ∈ outputsS(σ)
2

Proposition 5.54
asco and aconf are reflexive, but not transitive.

2

Proof (proposition 5.54)
Reflexivity follows immediately from the definition. For non-transitivity consider S1,
S7, and S9 (figure B.1): S1 asco S7, S7 asco S9, but S1 /asco S9, because OS1(a·a) =
{x} 6⊆ OS9(a·a) = {δ, y}. aconf gives exactly the same results for this example.

2

Proposition 5.55

1. ≤O = ≤L∗ = ≤tr(QS) ⊂ ≤tr(S) ⊂ aconf ⊂ asco

2. The relations asco and aconf do not contain, nor are contained in ≤Q
tr (≤outputs),

confQ, or ≤δ.
2

Proof (proposition 5.55)

1. ≤O=≤L∗ : Directly from the definitions.

≤O=≤tr(QS ): The only-if -part is trivial.
The if -part is proved by contraposition:

∃σ0 ∈ L∗ : OI(σ0) 6⊆ OS(σ0) implies ∃σ1 ∈ traces(QS) : OI(σ1) 6⊆ OS(σ1)



240 Appendix B. Proofs

For σ0 ∈ traces(QS) we trivially choose σ1 = σ0.
For σ0 ∈ L∗ \ traces(QS) we have that OS(σ0) = ∅, and thus OI(σ0) 6= ∅.
Thus σ0 6∈ traces(QS), σ0 ∈ traces(QI)
implying there exist σ1, σ2 ∈ L∗, x ∈ LU such that:

σ0 = σ1 ·x·σ2, σ1 ∈ traces(QS),
σ1 ·x 6∈ traces(QS) and σ1 ·x ∈ traces(QI)

implying x 6∈ OS(σ1) and x ∈ OI(σ1)
hence for σ1 ∈ traces(QS) we conclude: OI(σ1) 6⊆ OS(σ1)

≤O⊆≤tr(S): Immediately from traces(S) ⊆ L∗.

≤tr(S)⊆ aconf: Immediately from {σ′ | ∃σ ∈ tracks(S) : σ′ � σ} ⊆ traces(S).

aconf ⊆ asco:
From {σ | ∃x ∈ LU : σ ·x ∈ tracks(S)} ⊆ {σ′ | ∃σ ∈ tracks(S) : σ′ � σ}.

≤O 6=≤tr(S): S1 6≤O S7 and S1 ≤tr(S) S7.

≤tr(S) 6= aconf: In figure 5.13: I2 6≤tr(S) S2 and I2 aconf S2.

aconf 6= asco: S3 /aconf S1 and S3 asco S1.

2. aconf, asco 6=≤Q
tr: S4 /aconf , /asco S1 and S4 ≤

Q
tr S1;

S1 aconf, asco S7 and S1 6≤
Q
tr S7.

aconf, asco 6=≤δ: S8 /aconf , /asco S5 and S8 ≤δ S5;
S1 aconf, asco S7 and S1 6≤δ S7.

aconf, asco 6= confQ: S12 /aconf , /asco S13 and S12 confQS13;
S10 aconf, asco S11 and S10 /confQS11. 2

Proposition 5.58

1. σ1@
0σ2 iff σ1 = σ2

2.
⋃∞

n=0 @n = @

3. tracks0(S) = tracks(S)

4. tracksn(S) ⊆ traces(QS)

5.
⋃∞

n=0 tracksn(S) = traces(QS)

6. aconf 0 = aconf

7.
⋂∞

n=0 aconfn = ≤O

8. m ≤ n implies aconfm ⊇ aconfn

2

Proof (proposition 5.58)

1. For σ1, σ2 ∈ L∗
I , it follows immediately that σ1@

0 σ2 iff σ1 = σ2.
For σ1 = ρ1 ·x1 ·σ

′
1, σ2 = ρ2 ·x2 ·σ

′
2, with ρ1, ρ2 ∈ L∗

I , x1, x2 ∈ LU , σ′
1, σ

′
2 ∈ L∗, we

have σ1@
0 σ2 iff ∃m ≤ 0, |ρ2\ρ1| = m, x1 = x2, σ′

1@
0−m (ρ2\ρ1) ·σ

′
2. This holds

if and only if m = 0, hence ρ1 = ρ2, and σ′
1@

0 σ′
2 iff σ1 = σ2 according to the

induction hypothesis. Thus σ1 = σ2.



B.5. Chapter 5 (Asynchronous Testing) 241

2. ⊆: Suppose 〈σ1, σ2〉 ∈
⋃∞

n=0 @n.
This implies ∃n : σ1@

n σ2, implying (∗ by definition @n ⊆ @ ∗) σ1@ σ2.

⊇: By induction; first, suppose σ1@ σ2, with σ1, σ2 ∈ L∗
I :

σ1@ σ2 implies σ1 � σ2, implies ∃ρ ∈ L∗
I : σ1 ·ρ = σ2, implies σ1@

|ρ| σ2.
Secondly, suppose σ1@ σ2, with σ1 = ρ1·x1·σ

′
1, σ2 = ρ2·x2·σ

′
2, with ρ1, ρ2 ∈ L∗

I ,
x1, x2 ∈ LU , σ′

1, σ
′
2 ∈ L∗: σ1@ σ2 implies ∃ρ ∈ L∗

I : ρ1 ·ρ = ρ2 and x1 =
x2 and σ′

1@ (ρ2\ρ1)·σ
′
2.

By induction: ∃n : σ′
1@

n (ρ2\ρ1)·σ
′
2. Thus σ1@

n+|ρ| σ2.

3. tracks0(S) = { σ ∈ L∗ | ∃σ′ ∈ tracks(S) : σ′@0 σ }
= { σ ∈ L∗ | ∃σ′ ∈ tracks(S) : σ′ = σ }
= tracks(S)

4. σ ∈ tracksn(S)
implies ∃σ′ ∈ tracks(S) : σ′@n σ
implies (∗ σ′ ∈ tracks(S) implies σ′ ∈ traces(S),

σ′@m σ implies σ′@ σ ∗)
σ ∈ traces(QS)

5. ⊆: σ ∈
⋃∞

n=0 tracksn(S)
implies ∃n ≥ 0 : σ ∈ tracksn(S)
implies (∗ proposition 5.58.4 ∗)

σ ∈ traces(QS)

⊇: σ ∈ traces(QS)
implies ∃σ′ ∈ tracks(S) : σ′@ σ
implies (∗ proposition 5.58.2 ∗)

∃n ≥ 0, ∃σ′ ∈ tracks(S) : σ′@n σ
implies ∃n ≥ 0 : σ ∈ tracksn(S)
implies σ ∈

⋃∞
n=0 tracksn(S)

6. I aconf 0 S
iff ∀σ ∈ lcl�(

⋃0
i=0 tracks i(S)) : OI(σ

′) ⊆ OS(σ′)
iff ∀σ ∈ lcl�(tracks(S)) : OI(σ

′) ⊆ OS(σ′)
iff I aconf S

7. ⊆: I 6≤O S
implies I 6≤tr(QS ) S
implies ∃σ ∈ traces(QS) : OI(σ) 6⊆ OS(σ)
implies (∗ proposition 5.58.5 ∗)

∃n : ∃σ ∈ tracksn(S) : OI(σ) 6⊆ OS(σ)
implies ∃n : I /aconfn S
implies 〈I, S〉 6∈

⋂∞
n=0 aconfn



242 Appendix B. Proofs

⊇: I ≤O S
implies ∀σ ∈ L∗ : OI(σ) ⊆ OS(σ)
implies ∀n, ∀σ ∈ L∗ : OI(σ) ⊆ OS(σ)
implies (∗ taking a subset of L∗ ∗)

∀n, ∀σ ∈ lcl�(
⋃n

i=0 tracks i(S)) : OI(σ
′) ⊆ OS(σ′)

implies ∀n : I aconfn S
implies 〈I, S〉 ∈

⋂∞
n=0 aconfn

8. Suppose m ≤ n and I aconfn S.
This implies ∀σ ∈ lcl�(

⋃n
i=0 tracks i(S)) : OI(σ) ⊆ OS(σ)

implies (∗
⋃m

i=0 tracks i(S) ⊆
⋃n

i=0 tracks i(S) ∗) :
∀σ ∈ lcl�(

⋃m
i=0 tracks i(S)) : OI(σ) ⊆ OS(σ),

implies I aconfm S.

2

B.5.5 Section 5.8 (Test Derivation)

Proposition 5.62
{TS(σ)} is a complete test suite for S with respect to ≤{σ}.

2

Proof (proposition 5.62)
To prove: I ≤{σ} S iff I a-passesD TS(σ),
which is equivalent to ((5.2), definition 5.60, proposition 3.26):
OI(σ) ⊆ OS(σ) iff QI satC testreqsD(TS(σ).
Distinguish between δS(σ) and not δS(σ):

not δS(σ): testreqsD(TS(σ)) = { after σ must A | outputsS(σ) ⊆ A }:

OI(σ) ⊆ OS(σ)
iff (∗ not δS(σ) ∗)

OI(σ) ⊆ outputsS(σ)
iff (∗ lemma B.3 ∗)

QI after σ must outputsS(σ)
iff (∗ proposition 3.5.3 ∗)

∀A ⊇ outputsS(σ) : QI after σ must A
iff (∗ definition 3.16, proposition 3.26 ∗)

QI satC testreqsD(TS(σ))

δS(σ): testreqsD(TS(σ)) = { after σ ·x must A | x ∈ LU\outputsS(σ) and ∅ ⊆ A }:



B.5. Chapter 5 (Asynchronous Testing) 243

OI(σ) ⊆ OS(σ)
iff (∗ δS(σ) ∗)

outputsI(σ) ⊆ outputsS(σ)
iff (∗ definition 5.13 ∗)

∀x ∈ LU : x 6∈ outputsS(σ) implies QI

σ·x

6⇒

iff ∀x ∈ LU\outputsS(σ) : QI

σ·x

6⇒
iff (∗ proposition 3.5.5 ∗)

∀x ∈ LU\outputsS(σ) : QI after σ ·x must ∅
iff (∗ proposition 3.5.3 ∗)

∀x ∈ LU\outputsS(σ), ∀A ⊇ ∅ : QI after σ ·x must A
iff (∗ definition 3.16, proposition 3.26 ∗)

QI satC testreqsD(TS(σ))
2

Theorem 5.64
{TS(σ) | σ ∈ F} is a complete test suite for S with respect to ≤F .

2

Proof (theorem 5.64)
I ≤F S

iff (∗ (5.2) ∗)
∀σ ∈ F : OI(σ) ⊆ OS(σ)

iff (∗ (5.2) for definition ≤{σ} ∗)
∀σ ∈ F : I ≤{σ} S

iff (∗ proposition 5.62 ∗)
∀σ ∈ F : I a-passesD TS(σ)

iff (∗ notation 2.8 ∗)
I a-passesD {TS(σ) | σ ∈ F}

2

B.5.6 Section 5.9 (Computation of Outputs and Deadlocks)

Proposition 5.68

1. outputsS(σ) =
⋃
{ µω( 〈S ′, σ′〉 ) | 〈S ′, σ′〉 ∈ µS(σ) }

2. δS(σ) iff ∃〈S ′, σ′〉 ∈ µS(σ) : µδ(〈S ′, σ′〉)
2

Proof (proposition 5.68)

1. To prove: x ∈ outputsS(σ) iff ∃〈S ′, σ′〉 ∈ µS(σ) : S ′ x
⇒ and x ∈ LU

if : ∃〈S ′, σ′〉 ∈ µS(σ) : S ′ x
⇒ and x ∈ LU

implies ∃S ′, σ′ : [ǫ≪S≪ǫ]
σ
⇒ [ǫ≪S ′

≪σ′ ] and S ′ x
⇒ and x ∈ LU

implies ∃S ′, σ′ : [ǫ≪S≪ǫ]
σ
⇒ [ǫ≪S ′

≪σ′ ]
x
⇒ and x ∈ LU

implies [ǫ≪S≪ǫ]
σ·x
⇒ and x ∈ LU

implies x ∈ outputsS(σ)



244 Appendix B. Proofs

only if : Analogous to the proof of proposition 5.22.3:

x ∈ outputsS(σ)

implies [ǫ≪S≪ǫ]
σ·x
⇒

implies ∃S ′, σ′
i, σ

′
u : [ǫ≪S≪ǫ]

σ·x
⇒ [σ′

u≪S ′
≪σ′

i
]

implying that somewhere in this derivation the following two derivation steps
must occur:

[σv≪S1≪σj
] τ−→ [σv·x≪S2≪σj

] (1)
[x·σw≪S3≪σk

] x−→ [σw≪S3≪σk
] (2)

for some σj , σk ∈ L∗
I , σv, σw ∈ L∗

U , S1, S2, S3, and with S1
x−→S2.

Let σa ∈ L∗ label the derivation from initial state to (1), and σb ∈ L∗ the
derivation from (1) to (2), then we have:

[ǫ≪S≪ǫ]
σa

⇒ [σv≪S1≪σj
]

τ−→ [σv·x≪S2≪σj
]

σb
⇒ [x·σw≪S3≪σk

]
x−→ [σw≪S3≪σk

]
ǫ
⇒ [σ′

u≪S ′
≪σ′

i
]

It follows that σv = σb⌈LU , σa ·σb = σ, and that also the following derivation
is possible:

[ǫ≪S≪ǫ]
σa

⇒ [σb⌈LU≪S1≪σj
]

σb
⇒ [ǫ≪S1≪σj ·(σb⌈LI )]

hence: 〈S1, σj ·(σb⌈LI)〉 ∈ µS(σ) and S1
x
⇒ and x ∈ LU .

2. δS(σ)
iff (∗ proposition 5.41.1 ∗)

σ ∈ δ-empty(S) or σ ∈ δ-block(S)
iff (∗ definition 5.40.1,2 ∗)

( ∃σ′ ∈ traces(S) : σ′ |@| σ and S after σ′ refuses LU )
or ( ∃σ′ ∈ traces(S), a ∈ LI : σ′ ·a @ σ and S after σ′ refuses {a}∪LU )

iff (∗ definition 3.4 ∗)

( ∃σ′, S ′ : S
σ′

⇒S ′ and σ′ |@| σ and ∀x ∈ LU : S ′
x

6⇒ )

or ( ∃σ′, S ′, a : S
σ′

⇒S ′ and σ′ ·a @ σ and ∀x ∈ LU∪{a} : S ′
x

6⇒ )
iff (∗ propositions 5.33.3,4, 5.22.1,2, σ′ @ σ′ ·a @ σ, a·σ′′ = σ\\σ′ ∗)

( ∃S ′ : [ǫ≪S≪ǫ]
σ
⇒ [ǫ≪S ′

≪ǫ] and ∀x ∈ LU : S ′
x

6⇒ )

or ( ∃σ′′, S ′, a : [ǫ≪S≪ǫ]
σ
⇒ [ǫ≪S ′

≪a·σ′′ ] and ∀x ∈ LU ∪ {a} : S ′
x

6⇒ )

iff ∃S ′, σ′ : [ǫ≪S≪ǫ]
σ
⇒ [ǫ≪S≪σ′ ] and

( ( σ′ = ǫ and ∀x ∈ LU : S ′
x

6⇒ )

or ( ∃σ′′, a : σ′ = a·σ′′ and ∀x ∈ LU ∪ {a} : S ′
x

6⇒ ) )
iff (∗ definition 5.67 ∗)

∃〈S ′, σ′〉 ∈ µS(σ) : µδ(〈S ′, σ′〉)



B.5. Chapter 5 (Asynchronous Testing) 245

2

Proposition 5.69

1. µS(ǫ) = { 〈S ′, ǫ〉 | S
ǫ
⇒S ′ }

2. µS(σ ·a) = { 〈S ′, σ′ ·a〉 | 〈S ′, σ′〉 ∈ µS(σ) }

∪ { 〈S ′′, ǫ〉 | 〈S ′, ǫ〉 ∈ µS(σ) and S ′ a
⇒S ′′ }

3. µS(σ ·x) = { 〈S ′′, σ′′〉 | ∃〈S ′, σ′〉 ∈ µS(σ), ∃ρ � σ′ : S ′ x·ρ
⇒S ′′ and σ′′ = σ′\ρ }

2

Proof (proposition 5.69)

1. From definition 5.67:
µS(ǫ) = { 〈S ′, σ′〉 | [ǫ≪S≪ǫ]

ǫ
⇒ [ǫ≪S ′

≪σ′ ] } = { 〈S ′, ǫ〉 | S
ǫ
⇒S ′ }

2. ⊆: Let 〈S ′, σ′〉 ∈ µS(σ ·a)
distinguish: σ′ = ǫ and ∃b ∈ LI , σ

′′ ∈ L∗
I : σ′ = σ′′ ·b

σ′ = ǫ: 〈S ′, ǫ〉 ∈ µS(σ ·a)

implies [ǫ≪S≪ǫ]
σ·a
⇒ [ǫ≪S ′

≪ǫ]
implies ∃σj ∈ L∗

I , σv ∈ L∗
U , S1 :

[ǫ≪S≪ǫ]
σ
⇒ [σv≪S1≪σj

] a−→ [σv≪S1≪σj ·a]
ǫ
⇒ [ǫ≪S ′

≪ǫ],

hence σv = ǫ and S1

σj ·a
⇒S ′

implies ∃σj ∈ L∗
I , S1, S2, S3 : S1

σj

⇒S2
a−→S3

ǫ
⇒S ′

implies ∃S2, S3 : [ǫ≪S≪ǫ]
σ
⇒ [ǫ≪S1≪σj

]
ǫ
⇒ [ǫ≪S2≪ǫ]

and S2
a−→S3

ǫ
⇒S ′

implies ∃〈S2, ǫ〉 ∈ µS(σ) and S2
a
⇒S ′

σ′ = σ′′ ·b: 〈S ′, σ′′ ·b〉 ∈ µS(σ ·a)

implies [ǫ≪S≪ǫ]
σ·a
⇒ [ǫ≪S ′

≪σ′′·b]

implies a = b and [ǫ≪S≪ǫ]
σ
⇒ [ǫ≪S ′

≪σ′′ ]
implies 〈S ′, σ′′〉 ∈ µS(σ)

⊇:(1): 〈S ′, σ′ ·a〉 ∈ {〈S ′, σ′ ·a〉 | 〈S ′, σ′〉 ∈ µS(σ)}
implies 〈S ′, σ′〉 ∈ µS(σ)

implies [ǫ≪S≪ǫ]
σ
⇒ [ǫ≪S ′

≪σ′ ]

implies [ǫ≪S≪ǫ]
σ
⇒ [ǫ≪S ′

≪σ′ ] a−→ [ǫ≪S ′
≪σ′·a]

implies 〈S ′, σ′ ·a〉 ∈ µS(σ ·a)

(2): 〈S ′′, ǫ〉 ∈ { 〈S ′′, ǫ〉 | 〈S ′, ǫ〉 ∈ µS(σ) and S ′ a
⇒S ′′ }

implies 〈S ′, ǫ〉 ∈ µS(σ) and S ′ a
⇒S ′′

implies [ǫ≪S≪ǫ]
σ
⇒ [ǫ≪S ′

≪ǫ] and S ′ a
⇒S ′′

implies [ǫ≪S≪ǫ]
σ
⇒ [ǫ≪S ′

≪ǫ]
a−→ [ǫ≪S ′

≪a]
ǫ
⇒ [ǫ≪S ′′

≪ǫ]
implies 〈S ′′, ǫ〉 ∈ µS(σ ·a)



246 Appendix B. Proofs

3. ⊆: 〈S ′, σ′〉 ∈ µS(σ ·x)

implies [ǫ≪S≪ǫ]
σ·x
⇒ [ǫ≪S ′

≪σ′ ]
implies ∃σa, σb ∈ L∗, σj , σk ∈ L∗

I , σv, σw ∈ L∗
U , S1, S2, S3 :

[ǫ≪S≪ǫ]
σa

⇒ [σv≪S1≪σj
]

τ−→ [σv ·x≪S2≪σj
]

σb
⇒ [x·σw≪S3≪σk

]
x−→ [σw≪S3≪σk

]
ǫ
⇒ [ǫ≪S ′

≪σ′]
with σ = σa ·σb, σb⌈LU = σv, σw = ǫ, S1

x−→S2

implies ∃σa, σb ∈ L∗, σj , σk ∈ L∗
I , S1, S2, S3 :

[ǫ≪S≪ǫ]
σa

⇒ [σb⌈LU≪S1≪σj
]

τ−→ [(σb⌈LU )·x≪S2≪σj
]

σb
⇒ [x≪S3≪σk

]
x−→ [ǫ≪S3≪σk

]
ǫ
⇒ [ǫ≪S ′

≪σ′]

implies ∃ρ1, ρ2 ∈ L∗
I : S1

x−→S2

ρ1
⇒S3

ρ2
⇒S ′

such that ρ1 ·ρ2 ·σ
′ = σj ·(σb⌈LI)

implies ∃σa, σb ∈ L∗, σj ∈ L∗
I , S1 :

[ǫ≪S≪ǫ]
σa

⇒ [σb⌈LU≪S1≪σj
]

σb

⇒ [ǫ≪S1≪σj ·(σb⌈LI)]

and ρ1 ·ρ2 � σj ·(σb⌈LI) and S1

x·ρ1·ρ2
⇒S ′

and σ′ = (σj ·(σb⌈LI))\(ρ1 ·ρ2)

implies 〈S1, σj ·(σb⌈LI) 〉 ∈ µS(σ)

and ρ1 ·ρ2 � σj ·(σb⌈LI) and S1

x·ρ1·ρ2
⇒S ′

and σ′ = (σj ·(σb⌈LI))\(ρ1 ·ρ2)
implies 〈S ′, σ′〉 element of the right-hand side of 5.69.3

⊇: 〈S ′′, σ′′〉 element of the right-hand side of 5.69.3

implies ∃〈S ′, σ′〉 ∈ µS(σ), ∃ρ � σ′ : S ′ x·ρ
⇒S ′′ and σ′′ = σ\ρ

implies ∃S ′, σ′, ρ � σ′ :

[ǫ≪S≪ǫ]
σ
⇒ [ǫ≪S ′

≪σ′]
ǫ
⇒ [x≪S ′′

≪σ′\ρ]
x−→ [ǫ≪S ′′

≪σ′\ρ]
implies 〈S ′′, σ′′〉 ∈ µS(σ ·x)

2



B.6. Chapter 6 (Test Selection) 247

B.6 Chapter 6 (Test Selection)

B.6.1 Section 6.2 (A Framework for Test Selection)

Proposition 6.4
If v : P(LFDT ) → R≥0 is a valuation of P(LFDT ), then v : P(K) → R≥0, defined by

v(Π) =def v ( { I ∈ LFDT | I fails Π } )

is a valuation of P(K).
2

Proof (proposition 6.4)
Π1 ≤Π Π2

implies (∗ definition 6.1 ∗)
{I ∈ LFDT | I fails Π1} ⊆ {I ∈ LFDT | I fails Π2}

implies (∗ definition 6.3 ∗)
v ( {I ∈ LFDT | I fails Π1} ) ≤ v ( {I ∈ LFDT | I fails Π2} )

implies (∗ definition v ∗)
v(Π1) ≤ v(Π2)

2

Proposition 6.6
For all finite E ⊆ LFDT and w : E → R≥0 wr is a valuation of P(LFDT ), and wr is a
valuation of P(K).

2

Proof (proposition 6.6)
c1 ⊆ c2

implies {e | e ∈ E and e ∈ c1} ⊆ {e | e ∈ E and e ∈ c2}
implies (∗ w(e) ≥ 0 ∗)

Σ{w(e) | e ∈ E and e ∈ c1} ≤ Σ{w(e) | e ∈ E and e ∈ c2}
implies (∗ definition 6.5 ∗)

wr(c1) ≤ wr(c2)

Proposition 6.4: if wr is a valuation of P(LFDT ), then wr is a valuation of P(K).
2

Proposition 6.8
For all w : Ξ → R≥0 wp is a valuation of E(Ξ).

2



248 Appendix B. Proofs

Proof (proposition 6.8)
c1 ⊆ c2

implies (∗ c1, c2 ∈ E(Ξ) ∗)
⋃
{ξi | ξi ⊆ c1} ⊆

⋃
{ξi | ξi ⊆ c2}

implies (∗ Ξ is a partition ∗)
{ξi | ξi ⊆ c1} ⊆ {ξi | ξi ⊆ c2}

implies (∗ w(ξi) ≥ 0 ∗)
Σ{w(ξi) | ξi ⊆ c1} ≤ Σ{w(ξi) | ξi ⊆ c2}

implies (∗ definition 6.7.3 ∗)
wp(c1) ≤ wp(c2)

2

Proposition 6.10
For all u : LFDT/≈K→ R≥0, up : P(K) → R≥0 is a valuation of P(K).

2

Proof (proposition 6.10)
First, for all Π: {I | I fails Π} is expressible in LFDT / ≈K, i.e. {I | I fails Π} ∈
E(LFDT/≈K);

{I | I fails Π} =
⋃
{ξi ∈ LFDT/≈K| ξi ⊆ {I | I fails Π} }

I0 ∈ {I | I fails Π}
iff [I0]≈K

⊆ {I | I fails Π}
iff I0 ∈

⋃
{ξi ∈ LFDT/≈K| ξi ⊆ {I | I fails Π} }

Now let u : LFDT/≈K→ R≥0,
then (∗ proposition 6.8 ∗)

up : E(Ξ) → R≥0 is a valuation of E(LFDT/≈K)
then (∗ proposition 6.4, and for all Π: {I | I fails Π} ∈ E(LFDT/≈K) ∗)

up : P(K) → R≥0 is a valuation of P(K)

2

Proposition 6.11
For all finite E ⊆ LFDT and w : E → R≥0 there exists a u : LFDT/≈K→ R≥0 such that
up = wr.

2

Proof (proposition 6.11)
Define u : LFDT/≈K→ R≥0 by putting u(c) = Σ{w(e) | e ∈ c ∩ E}.



B.6. Chapter 6 (Test Selection) 249

Then up(Π)
= (∗ proposition 6.4 ∗)

up ( {I | I fails Π} )
= (∗ definition 6.7.3, {I | I fails Π} ∈ E(LFDT/≈K) ∗)

Σ{u(ξi) | ξi ⊆ {I | I fails Π}, ξi ∈ LFDT/≈K }
= (∗ definition u ∗)

Σ {Σ{w(e) | e ∈ ξi ∩ E} | ξi ⊆ {I | I fails Π}, ξi ∈ LFDT/≈K }
= (∗ {I | I fails Π} =

⋃
{ξi | ξi ⊆ {I | I fails Π} } ∗)

Σ{w(e) | e ∈ {I | I fails Π} ∩ E}
= (∗ definition 6.5 ∗)

wr ( {I | I fails Π} )
= (∗ proposition 6.4 ∗)

wr(Π)
2

Proposition 6.13
Let u : LFDT/≈P→ R≥0, then

1. up : E(LFDT/≈P ) → R≥0 is a valuation of E(LFDT/≈P );

2. Let E be the set of test suites for which the set of detected implementations is
expressible in LFDT/ ≈P : E = {Π ⊆ K | {I | I fails Π} ∈ E(LFDT/ ≈P )}, then
up : E → R≥0 is a valuation for E.

2

Proof (proposition 6.13)
Directly from propositions 6.8 and 6.4.

2

B.6.2 Section 6.5 (Test Selection by Specification Selection)

Proposition 6.17
Let ΠR and ΠR′ be sound test derivations for the implementation relations ≤R and ≤R′

respectively. If ≤R ⊆≤′
R then ΠR′ is sound for ≤R.

2

Proof (proposition 6.17)
To prove (definition 2.9): ∀S, I ∈ LFDT : I ≤R S implies I passes ΠR′(S):

I ≤R S
implies I ≤R′ S
implies (∗ soundness ΠR′ for ≤R′ ∗)

I passes ΠR′(S)
2

Proposition 6.19
If the test derivation ΠR is sound for ≤R, and ΘR is a selection transformation for ≤R,
then the test derivation ΠR◦ΘR is sound for ≤R.

2



250 Appendix B. Proofs

Proof (proposition 6.19)
To prove (definition 2.9): ∀S, I ∈ LFDT : I ≤R S implies I passes ΠR(ΘR(S)):

I ≤R S
implies (∗ ΘR is a selection transformation ∗)

I ≤R ΘR(S)
implies (∗ soundness ΠR ∗)

I passes ΠR(ΘR(S))
2

Proposition 6.21
Any Θconf : LTS → LTS satisfying S ext Θconf (S) for all S ∈ LTS, is a selection
transformation for conf.

2

Proof (proposition 6.21)
To prove: ∀I, S ∈ LTS : I conf S implies I conf Θconf (S),
which means that, given I, S ∈ LTS, and I conf S,
it has to be proved that: ∀σ ∈ traces(Θconf (S)), ∀A ⊆ L :

Θconf(S) after σ must A implies I after σ must A

σ ∈ traces(Θconf (S)) and Θconf (S) after σ must A
implies (∗ S ext Θconf (S) ∗)

σ ∈ traces(S) and S after σ must A
implies (∗ I conf S ∗)

I after σ must A
2

Proposition 6.23
For all A ⊆ L : S ext S\A

2

Proof (proposition 6.23)
Proposition 6.27 with α(σ) = A for all σ.

2

Lemma B.5
Let α : L∗ → P(L), ρ, σ ∈ L∗, and define:
〈α, ρ〉 ⊓ σ =def { a ∈ L | ∃ρ1, ρ2 ∈ L∗ : σ = ρ1 ·a·ρ2 and a ∈ α(ρ·ρ1) }.

1. If S\〈α, ρ〉
σ
⇒S ′ then ∃S1 : S ′ = S1\〈α, ρ·σ〉

2. If 〈α, ρ〉 ⊓ σ = ∅ then ( S\〈α, ρ〉
σ
⇒S ′\〈α, ρ·σ〉 iff S

σ
⇒S ′ )

3. if 〈α, ρ〉 ⊓ σ 6= ∅ then S\〈α, ρ〉
σ

6⇒
2

Proof (lemma B.5)

1. By induction on the length of σ:

ǫ: Directly from the fact hat the only applicable inference rule is I3R.



B.6. Chapter 6 (Test Selection) 251

σ ·a: S\〈α, ρ〉
σ·a
⇒S ′

implies (∗ induction hypothesis ∗)

∃S1 : S\〈α, ρ〉
σ
⇒S1\〈α, ρ·σ〉

ǫ
⇒ a−→

ǫ
⇒S ′

implies (∗ inference rules I2R and I3R ∗)

∃S1, S2, S3, S4 : S\〈α, ρ〉
σ
⇒S1\〈α, ρ·σ〉

ǫ
⇒S2\〈α, ρ·σ〉 a−→S3\〈α, ρ·σ ·a〉

ǫ
⇒S4\〈α, ρ·σ ·a〉

implies ∃S4 : S\〈α, ρ〉
σ·a
⇒S4\〈α, ρ·σ ·a〉

2. By induction on the length of σ:

ǫ: Directly from the fact hat the only applicable inference rule is I3R.

σ ·a: Let 〈α, ρ〉 ⊓ σ ·a = ∅,

then S\〈α, ρ〉
σ·a
⇒S ′\〈α, ρ·σ ·a〉

iff (∗ lemma B.5.1 and induction hypothesis ∗)

∃S1 : S
σ
⇒S1 and S1\〈α, ρ·σ〉

ǫ
⇒ a−→

ǫ
⇒S ′\〈α, ρ·σ ·a〉

iff (∗ I2R and I3R, and 〈α, ρ〉 ⊓ σ ·a = ∅ implies a 6∈ α(ρ·σ) ∗)

∃S1 : S
σ
⇒S1 and S1

ǫ
⇒ a−→

ǫ
⇒S ′

iff S
σ·a
⇒S ′

3. 〈α, ρ〉 ⊓ σ ·a 6= ∅
implies ∃a, ρ1, ρ2 : σ = ρ1 ·a·ρ2 and a ∈ α(ρ·ρ1)
implies

either S\〈α, ρ〉
ρ1

6⇒

implies S\〈α, ρ〉
σ

6⇒

or S\〈α, ρ〉
ρ1
⇒S ′\〈α, ρ·ρ1〉

implies (∗ a ∈ α(ρ·ρ1) ∗)

S\〈α, ρ〉
ρ1
⇒S ′\〈α, ρ·ρ1〉

a

6⇒

implies S\〈α, ρ〉
σ

6⇒
2

Proposition 6.27
For all α : L∗ → P(L) and ρ ∈ L∗ : S ext S\〈α, ρ〉

2

Proof (proposition 6.27)

traces(S) ⊇ traces(S\〈α, ρ〉):

S\〈α, ρ〉
σ
⇒

implies (∗ lemma B.5.3 ∗)
〈α, ρ〉 ⊓ σ = ∅

implies (∗ lemma B.5.2 ∗)

S
σ
⇒

S conf S\〈α, ρ〉: To prove for σ ∈ traces(S\〈α, ρ〉), A ⊆ L:

∀S ′ ( S\〈α, ρ〉
σ
⇒S ′\〈α, ρ·σ〉 implies ∃a ∈ A : S ′\〈α, ρ·σ〉

a
⇒ )

implies ∀S ′′ ( S
σ
⇒S ′′ implies ∃a ∈ A : S ′′ a

⇒ )



252 Appendix B. Proofs

S
σ
⇒S ′′

implies (∗ lemma B.5.2 ∗)

S\〈α, ρ〉
σ
⇒S ′′\〈α, ρ·σ〉

implies (∗ premiss ∗)

∃a ∈ A : S ′′\〈α, ρ·σ〉
a
⇒

implies (∗ lemma B.5.3 and B.5.2 ∗)

∃a ∈ A : S ′′ a
⇒

2

Corollary 6.28
For all S ∈ LTS, sound test derivations Πconf for conf, α : L∗ → P(L), and ρ ∈ L∗,

Πconf (S\〈α, ρ〉)

is a sound test suite for S with respect to conf.
2

Proof (corollary 6.28)
(∗ proposition 6.27 ∗)
∀S, α, ρ : S ext S\〈α, ρ〉

implies (∗ proposition 6.21 ∗)
·\〈α, ρ〉 : LTS → LTS is a selection transformation for conf

implies (∗ proposition 6.19 ∗)
ΠR◦ ·\〈α, ρ〉 is sound for conf

2



Bibliography

[Abr87] S. Abramsky. Observational equivalence as a testing equivalence. Theoretical
Computer Science, 53(3):225–241, 1987.

[ADLU88] A.V. Aho, A.T. Dahbura, D. Lee, and M.Ü. Uyar. An optimization tech-
nique for protocol conformance test generation based on UIO sequences and
rural chinese postman tours. In S. Aggarwal and K. Sabnani, editors, Proto-
col Specification, Testing, and Verification VIII, pages 75–86. North-Holland,
1988.

[Ald90] R. Alderden. COOPER, the compositional construction of a canonical tester.
In S.T. Vuong, editor, FORTE’89, pages 13–17. North-Holland, 1990.

[Bae86] J.C.M. Baeten. Procesalgebra. Kluwer, 1986. in Dutch.

[BAL+90] E. Brinksma, R. Alderden, R. Langerak, J. van de Lagemaat, and J. Tret-
mans. A formal approach to conformance testing. In J. de Meer, L. Mackert,
and W. Effelsberg, editors, Second International Workshop on Protocol Test
Systems, pages 349–363. North-Holland, 1990.

[BB87] T. Bolognesi and E. Brinksma. Introduction to the ISO specification language
LOTOS. Computer Networks and ISDN Systems, 14:25–59, 1987.

[BDD+92] G. von Bochmann, A. Das, R. Dssouli, M. Dubuc, A. Ghedamsi, and G. Luo.
Fault models in testing. In J. Kroon, R. J. Heijink, and E. Brinksma, editors,
Fourth International Workshop on Protocol Test Systems, number C-3 in IFIP
Transactions. North-Holland, 1992.

[BDZ89] G. von Bochmann, R. Dssouli, and J. R. Zhao. Trace analysis for confor-
mance and arbitration testing. IEEE Transactions on Software Engineering,
15(11):1347–1356, 1989.

[Ber91] G. Bernot. Testing against formal specifications: A theoretical view. In
S. Abramsky and T. S. E. Maibaum, editors, TAPSOFT’91, Volume 2, pages
99–119. Lecture Notes in Computer Science 494, Springer-Verlag, 1991.

[BH89] L. Brömstrup and D. Hogrefe. TESDL: Experience with generating test cases
from SDL specifications. In O. Færgemand and M. M. Marques, editors,
SDL’89: The Language at Work, pages 267–279. North-Holland, 1989.

253



254 Bibliography

[BK85] J.A. Bergstra and J.W. Klop. Algebra of communicating processes with ab-
straction. Theoretical Computer Science, 37(1):77–121, 1985.

[BKPR91] F.S. de Boer, J.N. Kok, C. Palamidessi, and J.J.M.M. Rutten. The failure of
failures in a paradigm for asynchronous communication. In J. C. M. Baeten
and J. F. Groote, editors, CONCUR’91, pages 111–126. Lecture Notes in
Computer Science 527, Springer-Verlag, 1991.

[Bri87] E. Brinksma. On the existence of canonical testers. Memorandum INF-87-5,
University of Twente, Enschede, The Netherlands, 1987.

[Bri88] E. Brinksma. A theory for the derivation of tests. In S. Aggarwal and K. Sab-
nani, editors, Protocol Specification, Testing, and Verification VIII, pages 63–
74. North-Holland, 1988.

[Bri92] E. Brinksma. On the uniqueness of fixpoints modulo observation congruence.
In CONCUR’92. Lecture Notes in Computer Science, Springer-Verlag, 1992.

[BS86] E. Brinksma and G. Scollo. Formal notions of implementation and confor-
mance in LOTOS. Memorandum INF-86-13, University of Twente, 1986.

[BSS87] E. Brinksma, G. Scollo, and C. Steenbergen. LOTOS specifications, their im-
plementations and their tests. In G. von Bochmann and B. Sarikaya, editors,
Protocol Specification, Testing, and Verification VI, pages 349–360. North-
Holland, 1987.

[BTV91] E. Brinksma, J. Tretmans, and L. Verhaard. A framework for test selection.
In B. Jonsson, J. Parrow, and B. Pehrson, editors, Protocol Specification,
Testing, and Verification XI, pages 233–248. North-Holland, 1991.

[BU91] B. S. Bosik and M. Ü. Uyar. Finite state machine based formal methods
in protocol conformance testing: From theory to implementation. Computer
Networks and ISDN Systems, 22(1):7–33, 1991.

[CCI88] CCITT. Specification and Description Language (SDL), volume Blue Book
X.1 of Recommendation Z.100. CCITT, 1988.

[Cho78] T.S. Chow. Testing software design modeled by finite-state machines. IEEE
Transactions on Software Engineering, 4(3):178–187, 1978.

[Chr90a] I. Christoff. Testing equivalences and fully abstract models for probabilistic
processes. In J.C.M. Baeten and J.W. Klop, editors, CONCUR ’90, pages
126–140. Lecture Notes in Computer Science 458, Springer-Verlag, 1990.

[Chr90b] I. Christoff. Testing Equivalences for Probabilistic Processes. PhD thesis,
Uppsala University, Sweden, 1990.

[Dal80] D. van Dalen. Logic and Structure. Universitext. Springer-Verlag, 1980.

[DN87] R. De Nicola. Extensional equivalences for transition systems. Acta Infor-
matica, 24:211–237, 1987.



Bibliography 255

[DNH84] R. De Nicola and M. Hennessy. Testing equivalences for processes. Theoretical
Computer Science, 34:83–133, 1984.

[Doo91] P. Doornbosch. Test derivation for full lotos. Memorandum INF-91-51, Uni-
versity of Twente, Enschede, The Netherlands, 1991. Master’s Thesis.

[Eer87] H. Eertink. The implementation of a test derivation algorithm. Memorandum
INF-87-36, University of Twente, Enschede, The Netherlands, 1987.

[Gla90] R.J. van Glabbeek. The linear time – branching time spectrum. In J.C.M.
Baeten and J.W. Klop, editors, CONCUR ’90, pages 278–297. Lecture Notes
in Computer Science 458, Springer-Verlag, 1990.

[HGD92] G.J. Holzmann, P. Godefroid, and Pirottin D. Coverage preserving reduction
strategies for reachability analysis. In R.J. Linn and M.Ü. Uyar, editors,
Protocol Specification, Testing, and Verification XII. North-Holland, 1992.
To appear.

[HM85] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concur-
rency. JACM, 32(1):137–161, 1985.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[ISO84] ISO. Information Processing Systems, Open Systems Interconnection, Basic
Reference Model. International Standard IS-7498. ISO, 1984.

[ISO86] ISO. Information Processing Systems, Open Systems Interconnection, Con-
nection Oriented Transport Protocol Specification. International Standard IS-
8073. ISO, 1986.

[ISO89a] ISO. Information Processing Systems, Open Systems Interconnection, Estelle
- A Formal Description Technique based on an Extended State Transition
Model. International Standard IS-9074. ISO, 1989.

[ISO89b] ISO. Information Processing Systems, Open Systems Interconnection, LO-
TOS - A Formal Description Technique Based on the Temporal Ordering of
Observational Behaviour. International Standard IS-8807. ISO, 1989.

[ISO91a] ISO. Information Technology, Open Systems Interconnection, Conformance
Testing Methodology and Framework. International Standard IS-9646. ISO,
1991. CCITT X.290–X.294.

[ISO91b] ISO/IEC JTC1/SC21 N6201. Information Retrieval, Transfer and Man-
agement for OSI, Formal Methods in Conformance Testing, working draft.
Project 1.21.54, (Arles output). ISO, June 1991.

[ISO92] ISO. Information Processing Systems, Open Systems Interconnection, Formal
Description of ISO 8073 (Classes 0,1,2,3) in LOTOS. Technical Report TR
10024. ISO/IEC, 1992. also: Memorandum INF-92-20, University of Twente,
The Netherlands.



256 Bibliography

[JJH90] He Jifeng, M.B. Josephs, and C.A.R. Hoare. A theory of synchrony and asyn-
chrony. In TC2 Working Conference on Programming Concepts and Methods,
1990.

[Lan90] R. Langerak. A testing theory for LOTOS using deadlock detection. In
E. Brinksma, G. Scollo, and C. A. Vissers, editors, Protocol Specification,
Testing, and Verification IX, pages 87–98. North-Holland, 1990.

[Lan92] R. Langerak. Event structures for design and transformation in LOTOS.
In K.R. Parker and G.A. Rose, editors, FORTE’91, number C-2 in IFIP
Transactions, pages 265–280. North-Holland, 1992.

[Lar90] K. G. Larsen. Ideal specification formalism = expressivity + compositionality
+ decidability + testability + ... In J.C.M. Baeten and J.W. Klop, editors,
CONCUR ’90, pages 33–56. Lecture Notes in Computer Science 458, Springer-
Verlag, 1990.

[Led90] G. Leduc. On the Role of Implementation Relations in the Design of Dis-
tributed Systems using LOTOS. PhD thesis, Université de Liège, Belgium,
1990.

[LOT92] LOTOSPHERE. The lotosphere design methodology: Basic concepts. In
Deliverable Lo/WP1/T1.1/N0045/V04. (ESPRIT 2304), 1992.

[LS89] K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. In
Proceedings Principles of Programming Languages 16. ACM, 1989.

[Mil80] R. Milner. A Calculus of Communicating Systems. Lecture Notes in Computer
Science 92. Springer-Verlag, 1980.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[Mye79] G.L. Myers. The Art of Software Testing. John Wiley & Sons Inc, 1979.

[Par81] D. Park. Concurrency and automata on infinite sequences. In P. Deussen,
editor, Proceedings 5th GI Conference, pages 167–183. Lecture Notes in Com-
puter Science 104, Springer-Verlag, 1981.

[PF90] D. H. Pitt and D. Freestone. The derivation of conformance tests from lo-
tos specifications. IEEE Transactions on Software Engineering, 16(12):1337–
1343, 1990.

[Phi87] I. Phillips. Refusal testing. Theoretical Computer Science, 50(2):241–284,
1987.

[Pnu86] A. Pnueli. Applications of temporal logic to the specification and verification
of reactive systems: A survey of current trends. In Current Trends in Con-
currency, pages 510–584. Lecture Notes in Computer Science 224, Springer-
Verlag, 1986.



Bibliography 257

[Ray87] D. Rayner. OSI conformance testing. Computer Networks and ISDN Systems,
14:79–98, 1987.

[SL89] D.P. Sidhu and T.K. Leung. Formal methods for protocol testing: A detailed
study. IEEE Transactions on Software Engineering, 15(4):413–426, 1989.

[Spi89] J.M. Spivey. The Z Notation: a Reference Manual. International Series in
Computer Science. Prentice Hall, 1989.

[Sti91] C. Stirling. Modal and temporal logics. Laboratory for Foundations of Com-
puter Science Report Series ECS-LFCS-91-157, University of Edinburgh, Ed-
inburgh, UK, 1991.

[TKB92] J. Tretmans, P. Kars, and E. Brinksma. Protocol conformance testing : A for-
mal perspective on ISO IS-9646. In J. Kroon, R. J. Heijink, and E. Brinksma,
editors, Fourth International Workshop on Protocol Test Systems, number
C-3 in IFIP Transactions, pages 131–142. North-Holland, 1992. Extended
abstract of Memorandum INF-91-32, University of Twente, Enschede, The
Netherlands, 1991.

[TL90] J. Tretmans and J. van de Lagemaat. Conformiteitstesten. Memorandum INF
90-86, University of Twente, Enschede, The Netherlands, 1990. in Dutch.

[Tre90] J. Tretmans. Test case derivation from LOTOS specifications. In S.T. Vuong,
editor, FORTE’89, pages 345–359. North-Holland, 1990.

[Tri82] K.S. Trivedi. Probability and Statistics with Reliability, Queueing, and Com-
puter Science Applications. Prentice-Hall, 1982.

[TV92] J. Tretmans and L. Verhaard. A queue model relating synchronous and asyn-
chronous communication. In R.J. Linn and M.Ü. Uyar, editors, Protocol Spec-
ification, Testing, and Verification XII, IFIP Transactions. North-Holland,
1992. To appear. Extended abstract of Memorandum INF-92-04, University
of Twente, Enschede, The Netherlands, 1992, and Internal Report, TFL RR
1992-1, TFL, Hørsholm, Denmark.

[VSSB91] C.A. Vissers, G. Scollo, M. van Sinderen, and E. Brinksma. Specification
styles in distributed systems design and verification. Theoretical Computer
Science, 89:179–206, 1991.

[VSZ92] R.J. Velthuys, J.M. Schneider, and G. Zörntlein. A test derivation method
based on exploiting structure information. In R.J. Linn and M.Ü. Uyar,
editors, Protocol Specification, Testing, and Verification XII. North-Holland,
1992. To appear.

[VTKB92] L. Verhaard, J. Tretmans, P. Kars, and E. Brinksma. On asynchronous test-
ing. In G. von Bochmann, Dssouli R., and A. Das, editors, Fifth International
Workshop on Protocol Test Systems, IFIP Transactions. North-Holland, 1992.
to appear.



258 Bibliography

[Wez90] C. D. Wezeman. The CO-OP method for compositional derivation of confor-
mance testers. In E. Brinksma, G. Scollo, and C. A. Vissers, editors, Protocol
Specification, Testing, and Verification IX, pages 145–158. North-Holland,
1990.

[Whi87] L. J. White. Software Testing and Verification, volume 26 of Advances in
Computers. Academic Press, 1987.



Index

abstract test suite, 11
acceptance division lemma, 100
acceptance set, 91

reduced, 91
access point, 14
aconf, 134
action tree, 19
after , 23
after .. must .. , 69
after .. refuses .. , 69

anti-symmetry, 178
ape relation, 119
approximation induction principle, 85
asco, 134

behaviour
initial, 98
subsequent, 101

behaviour expression, 21
closed, 97
open, 97

bijection, 178
black-box testing, 2

canonical tester, 88
Cartesian product, 177

generalized, 177
choice .. after .. , 83
closure

left, 181
right, 179

CO-OP, 44, 92
co-well-foundedness, 181
communication

asynchronous, 109
synchronous, 107

compatible, 63
compulsory, 92

concatenation, 178
conf-requirements, 73
conf-theories, 78
conformance conf, 71, 73
conformance requirement, 28

dynamic, 12, 31
static, 12, 31

conformance requirements, 11
conformance testing, 7
conformance testing process, 11
conforming implementation, 12, 28
context relation, 112
correctness, 6
cost, 157
cost assignment, 157
coverage, 157

deadlock, 67
derivative, 23
deterministic, 23
development trajectory, 4

equivalence, 178
equivalence class, 178
error equivalence, 154
Estelle, 4, 109
event structures, 147
experimentation, 6
extension ext, 166

fail, 18
fails, 62
finite behaviour, 23
finite state, 23
formal description (FD), 4
formal description technique (FDT), 4
formal methods, 4, 7
free variable, 96

259



260 Index

fully-specified, 144
function, 178
functional testing, 2

gate, 96

image-finite, 23
image-infiniteness, 104
implementation, 4, 7
implementation access point, 38
implementation relation, 47, 62, 70

queue, 130
inconclusive, 18
independent failures, 162
informal requirements, 4
internal action τ , 19
interpretation function, 45
inverse, 178
ISO IS-9646, 3, 9
isomorphic, 24
IUT, 11

labelled transition system, 19
labelled transition systems, 19
language

behavioural LFDT , 29
logical, 29
requirement LR, 29

left-closedness, 181
linear order, 179
linearity, 178
logical

axioms, 57
completeness, 58
consistency, 59, 80
deductive closure, 59
derivation, 57, 78
independence, 58, 79
inference rules, 57
soundness, 58
syntactical completeness, 59
theory, 30

LOTOS, 4, 21
lower tester (LT), 14
LTS, 19

maximal element, 181
minimal element, 179
model, 30
must set, 83

reduced, 86
must test, 68

observable action, 19
observation, 67, 70
observation function, 67, 118
options, 11, 93
order, 179
out , 23
output deadlock, 117, 122, 141

blocking, 126
empty input queue, 125
permanent, 123
temporary, 123

output function, 117, 141

partial order, 179
partition, 179
pass, 18
passes, 62
PICS, 11, 31, 44
PICS proforma, 11
PICS-proforma, 31
PIXIT, 18, 45
PIXIT proforma, 18
point of control and observation, 39
point of control and observation (PCO),

14
poset, 179
postamble, 17
power set P, 177
preamble, 17
predicate, 96
prefix, 22
prefix-closed, 22
preorder, 179
failure, 70
testing, 70
probabilistic testing, 42, 169
probabilistic valuation, 158
process, 19



Index 261

protocol, 1
protocol conformance test report, 11
protocol conformance testing, 1, 2
protocol entity, 1
protocol validation, 6

queue context, 113
queue equivalence, 115, 116
queue operator, 113
queue preorder, 131
quotient, 178

reachability function, 142
realization, 6
recursion, 104
reduction, 70
reflexivity, 178
relation, 178

on, 178
representative error cases, 152
requirements

tested, 63, 75, 76
restriction operator, 166

generalized, 167
right-closed, 179

satisfaction relation, 28, 30
SDL, 4, 109, 145
selection transformation, 165
sequence, 177
set, 177
specification, 4, 7
specification selection, 164
stable, 23
standardization, 3, 8
state, 19

initial, 19
state labelled test case, 76
static conformance review, 12, 18, 31
strict order, 179
string, 177
strong bisimulation equivalence, 24
strongly converging, 19
structural testing, 2
substitution, 97

symmetry, 178
system under test (SUT), 14

θ-label, 146
test

basic interconnection, 16
behaviour, 16
capability, 16
conformance resolution, 16
deterministic, 76
nondeterministic, 74

test application, 34
test case, 12, 17, 33

abstract, 14, 38
conceptual, 37
generic, 14, 37

test context, 38, 109
test coordination procedure, 15
test derivation, 11, 62

asynchronous, 136
compositional, 90, 93
infinite branching, 96
labelled transition systems based, 82
language based, 89

test event, 17
test execution, 11, 18
test generation, 11, 12
test group, 17
test group objective, 17, 169
test hypothesis, 35
test implementation, 11, 17
test interface, 38, 109
test laboratory, 3
test method, 14, 38

coordinated, 15
distributed, 15
embedded, 15
local, 15
multi-layer, 15
remote, 15, 39, 107

test notation, 15, 34, 62
test purpose, 14, 32
test purposes, 155
test run, 36
test selection, 18, 149



262 Index

horizontal, 104
ISO IS-9646, 149
vertical, 104

test step, 17
test suite, 3, 12, 17

abstract, 12
complete, 62
executable, 17
exhaustive, 62
generic, 37
sound, 62

test validation, 35
test validity, 34
testing, 2

interoperability, 3
performance, 3
reliability, 3
robustness, 3
software, 2

testing equivalence, 65, 67
testing power, 75, 151
total order, 179
trace, 22, 177

length, 178
restriction, 178

trace equivalence, 24
trace preorder, 25
traces, 22

of queue context, 119
tracks, 121

B-, 126
E-, 126
P-, 123
T-, 124

transduction, 146
transformation, 6
transition, 19
transitivity, 178
TTCN, 16, 109, 138

unique input/output, 44
upper tester (UT), 14

validity, 34, 37, 40
strong, 34, 35

weak, 34, 35
valuation, 151
value, 151
value communication, 96
verdict, 34

function, 76
state based, 76
trace based, 74

verification, 6

weak bisimulation equivalence, 24
weight, 152
well-founded, 179
white-box testing, 2



Samenvatting

Om tot succesvolle communicatie tussen computersystemen van verschillende leveran-
ciers te komen worden standaard communicatieprotocollen ontwikkeld en gespecificeerd.
Vervolgens zijn er implementaties van deze protocollen nodig die conformeren aan deze
specificaties. Testen is een methode om de correctheid van implementaties ten opzichte
van de betreffende protocolspecificatie te controleren. We spreken dan van conformance
testen, of conformiteitstesten.

Dit proefschrift behandelt een formele aanpak van protocol conformance testen. Hier-
bij vindt het testen plaats op basis van een formele specificatie van het protocol. Het
uiteindelijke doel is te komen tot methoden voor het (automatisch) afleiden van hanteer-
bare verzamelingen tests uit formele specificaties. De afgeleide tests dienen bewijsbaar
correct te zijn, hetgeen wil zeggen dat ze geen correcte implementaties als foutief mo-
gen beoordelen, en bovendien moeten ze zinvol zijn: foutieve implementaties moeten
met hoge waarschijnlijkheid gedetecteerd worden. Een belangrijk aspect hierbij is een
formele definitie van correctheid: wanneer conformeert een protocolimplementatie aan
een formele protocolspecificatie.

Uitgangspunten voor dit proefschrift zijn de huidige, informele benadering van protocol
conformance testen zoals die te vinden is in de internationale standaard ISO IS-9646
”OSI Conformance Testing Methodology and Framework”, en de formalismen voor
de specificatie van gedistribueerde systemen die gebaseerd zijn op gelabelde transitie-
systemen en procesalgebra’s. De belangrijkste aspecten van de standaard ISO IS-9646
en van de gebruikte specificatieformalismen worden gëıntroduceerd in hoofdstuk 1.

In hoofdstuk 2 wordt een raamwerk voor conformance testen gepresenteerd. Hiertoe
wordt een formele interpretatie gegeven aan de belangrijkste concepten van de stan-
daard ISO IS-9646, zoals conformance voorwaarde, de definitie van conformance, test-
doel, testmethode en verschillende soorten tests. Deze interpretatie leidt op natuurlijke
wijze tot een formele definitie van conformance als een (preordenings-)relatie op het
specificatieformalisme. Zo’n relatie wordt een implementatierelatie genoemd.

In hoofdstuk 3 wordt het raamwerk ingevuld met bestaande implementatierelaties voor
gelabelde transitiesystemen. De relaties worden gëıntroduceerd uitgaande van obser-
vaties: het gedrag van een implementatie is correct als alle observaties die een omgeving
van de implementatie kan maken, verklaard kunnen worden uit het gedrag van de spe-
cificatie.

263



264 Samenvatting

Voor één van deze implementatierelaties, de relatie conf, worden vervolgens in hoofd-
stuk 4 algoritmen ontwikkeld, waarmee tests afgeleid kunnen worden uit een specificatie
die gegeven is als gelabeld transitiesysteem. Met deze algoritmen kunnen verzamelingen
tests afgeleid worden, die volledig en correct zijn: een implementatie is correct vol-
gens conf dan en slechts dan als alle tests succesvol zijn. De testafleidingsalgoritmen
werken op gelabelde transitiesystemen, en kunnen derhalve in principe ook gebruikt
worden om tests af te leiden uit een gedragsexpressie in een formele taal waarvan de
semantiek gegeven is als een gelabeld transitiesysteem. Een probleem ontstaat wanneer
dit gelabelde transitiesysteem oneindig is in vertakkingsgraad of aantal toestanden.
Deze oneindigheid maakt het onmogelijk de algoritmen te implementeren. Derhalve
worden de algoritmen getransformeerd tot algoritmen die toepasbaar zijn op gedragsex-
pressies. Voor een simpele klasse van gedragsexpressies worden regels gegeven waarmee
de tests compositioneel afgeleid kunnen worden uit deze gedragsexpressies.

De implementatierelaties van hoofdstuk 3 en de testafleidingsalgoritmen van hoofd-
stuk 4 gaan er vanuit dat de tester en de implementatie synchroon met elkaar kunnen
communiceren, zoals dat gemodelleerd kan worden door de parallelle synchronisatie-
operator op transitiesystemen. Hoofdstuk 5 laat zien dat deze theorie niet toepasbaar
is wanneer de tester en de implementatie via een FIFO-buffer communiceren. Tests
die afgeleid zijn voor synchrone communicatie kunnen niet alle foutieve implementaties
detecteren, terwijl correcte implementaties ten onrechte als foutief herkend worden.
Om dit aan te tonen wordt asynchrone communicatie tussen de tester en de imple-
mentatie geformaliseerd met behulp van een queue-operator op gelabelde transitiesys-
temen. Deze queue-operator modelleert twee FIFO-buffers, één voor invoer en één
voor uitvoer. Een systeem dat asynchroon communiceert met zijn omgeving wordt een
queue-context genoemd. Gedrag van queue-contexten blijkt te karakteriseren door twee
verzamelingen van reeksen van acties (traces): de reeksen die een queue-context kan
uitvoeren, en de reeksen die leiden tot een toestand waarbij geen uitvoer mogelijk is.
Implementatierelaties gebaseerd op asynchrone communicatie worden afgeleid, en een
aanzet tot testafleidingsalgoritmen voor deze relaties wordt gegeven. De afgeleide tests
worden vertaald naar TTCN, de standaard notatie voor tests uit de standaard ISO
IS-9646. Omdat TTCN een communicatie-mechanisme heeft dat gebruik maakt van
FIFO-buffers is deze vertaling zinvol, in tegenstelling tot een vertaling van synchrone
tests.

Met de testafleidingsalgoritmen uit de hoofdstukken 4 en 5 kunnen grote hoeveelheden
tests gegenereerd worden. Het reduceren van de hoeveelheid tests tot een economisch
en praktisch hanteerbare hoeveelheid wordt testselectie genoemd. In hoofdstuk 6 wordt
een raamwerk voor testselectie bestudeerd, uitgaande van het toekennen van waarden en
kosten aan verzamelingen tests. De waarde wordt gerelateerd aan de fout-detecterende
kracht van een verzameling tests. Het raamwerk, dat onafhankelijk is van een spe-
cificatieformalisme, is uitgewerkt voor gelabelde transitiesystemen. Bovendien wordt
voor transitiesystemen een techniek voor testselectie gebaseerd op specificatieselectie
behandeld. In plaats van het selecteren van tests uit een te grote verzameling van tests
wordt de specificatie getransformeerd, zodat de tests afgeleid van de getransformeerde,



Samenvatting 265

partiële specificatie een selectie vormen van de tests afgeleid van de oorspronkelijke
specificatie.

In het laatste hoofdstuk, hoofdstuk 7, worden naast de conclusies enkele onderwerpen
voor verder onderzoek genoemd, zoals de relatie tussen testen en verificatie, asynchrone
communicatie met andere contexten, het uitbreiden van de testselectiemethoden voor
realistische specificaties, de integratie van waarden en kosten, en het testbaar ontwerpen
van protocollen. Tenslotte wordt opgemerkt, dat de bruikbaarheid en de tekortko-
mingen van alle gepresenteerde ideeën gevalideerd moeten worden door toepassing op
het testen van realistische protocollen.



266 Samenvatting



Curriculum Vitae

27 augustus 1962: geboren te Hengelo Ov.

1974 – 1980: Gymnasium β
Scholengemeenschap Bataafse Kamp
Hengelo Ov.

1980 – 1986: Studie Elektrotechniek
Specialisatie Informatica
Universiteit Twente

1986 – 1992: Medewerker onderzoek
Vakgroep Tele-Informatica en Open Systemen
Faculteit der Informatica
Universiteit Twente

267



268


